Effects of surface-mounted obstacles on the local heat transfer enhancement of a base plate are investigated by using transient liquid crystal thermograph technique. To explore the geometry effects of short obstacles, the height less than one hydraulic diameter (d), three cross-sectional shapes of obstacles, i.e., circular, square and diamond, with variations in number of obstacles, obstacle spacing, and free-stream Reynolds number are considered. The maximum number of the obstacles in tandem array is 3 and the spacing between obstacles is 1d, 2d, or 4d. The free-stream Reynolds number ranges from 2100 to 4200. The experimental results reveal that the local heat transfer enhancement in front of leading circular and square obstacles are better than the diamond one, while the influenced area by the obstacle of the diamond shape is most remarkable. The present results disclose that an intermediate height (0.5d) of the protruding elements is more beneficial to the heat transfer enhancement in wake of the obstacle. With the sweepback leading edge of the top surface, the diamond and circular obstacles produce vortical flow across the obstacles and thus enhance heat transfer downstream in wake. Increasing Reynolds number leads to an enhancement in heat transfer performance. The number of and the spacing between the obstacles in tandem array are also influential factors to the flow structure and heat transfer enhancement on the basic plate.

1.
Sparrow
,
E. M.
,
Stahl
,
T. J.
, and
Traub
,
P.
,
1984
, “
Heat Transfer Adjacent to the Attached End of a Cylinder in Crossflow
,”
Int. J. Heat Mass Transf.
,
27
(
2
), pp.
233
242
.
2.
Goldstein
,
R. J.
,
Yoo
,
S. Y.
, and
Chung
,
M. K.
,
1990
, “
Convective Mass Transfer From a Square Cylinder and Its Base Plate
,”
Int. J. Heat Mass Transf.
,
33
(
1
), pp.
9
18
.
3.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1991
, “
Local Heat/Mass Transfer Distributions on the Surface of a Wall-Mounted Cube
,”
ASME J. Heat Transfer
,
113
, pp.
851
857
.
4.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transf.
,
39
(
14
), pp.
2925
2935
.
5.
Yoo
,
S. Y.
,
Goldstein
,
R. J.
, and
Chung
,
M. K.
,
1993
, “
Effects of Angle of Attack on Mass Transfer from a Square Cylinder and Its Base Plate
,”
Int. J. Heat Mass Transf.
,
36
(
2
), pp.
371
381
.
6.
Natarajan
,
V.
, and
Chyu
,
M. K.
,
1994
, “
Effect of Flow Angle-of-Attack on the Local Heat/Mass Transfer from a Wall-Mounted Cube
,”
ASME J. Heat Transfer
,
116
, pp.
552
560
.
7.
Meinders, E. R., Hanjalic, K. and Van Der Meer, T. H., 1998, “Similarity and Dissimilarity Between the Surface Heat Transfer and the Flow Structure in Turbulent Flows Over Surface-Mounted Cubes,” Proc., 11th Int. Heat Transfer Conference, 3, pp. 51–56.
8.
Meinders
,
E. R.
,
Van Der Meer
,
T. H.
, and
Hanjalic
,
K.
,
1998
, “
Local Convective Heat Transfer from an Array of Wall-Mounted Cubes
,”
Int. J. Heat Mass Transf.
,
41
(
2
), pp.
335
346
.
9.
Ishii
,
J.
, and
Honami
,
S.
,
1986
, “
A Three-Dimensional Turbulent Detached Flow With a Horseshoe Vortex
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
125
130
.
10.
Pierce
,
F. J.
, and
Tree
,
I. K.
,
1990
, “
The Mean Flow Structure on the Symmetry Plane of a Turbulent Junction Vortex
,”
ASME J. Fluids Eng.
,
112
, pp.
16
22
.
11.
Eckerle
,
W. A.
, and
Awad
,
J. K.
,
1991
, “
Effect of Freestream Velocity on the Three-Dimensional Separated Flow Region in Front of a Cylinder
,”
ASME J. Fluids Eng.
,
113
, pp.
37
44
.
12.
Baker
,
C. J.
,
1991
, “
The Oscillation of Horseshoe Vortex System
,”
ASME J. Fluids Eng.
,
113
, pp.
489
495
.
13.
Schofield
,
W. H.
, and
Logan
,
E.
,
1990
, “
Turbulent Shear Flow over Surface Mounted Obstacle
,”
ASME J. Fluids Eng.
,
112
, pp.
376
385
.
14.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
,
115
, pp.
85
92
.
15.
Igarashi
,
I.
, and
Takasaki
,
H.
,
1992
, “
Fluid Flow Around Three Rectangular Blocks in a Flat-Plate Laminar Boundary Layer
,”
Exp. Heat Transfer
,
5
, pp.
17
31
.
16.
Morris
,
G. K.
, and
Garimella
,
S. V.
,
1996
, “
Thermal Wake Downstream of a Three-Dimensional Obstacle
,”
Exp. Therm. Fluid Sci.
,
12
, pp.
65
74
.
17.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary-Layer on Local Mass Transfer from a Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
, pp.
260
267
.
18.
Goldstein
,
R. J.
,
Chyu
,
M. K.
, and
Hain
,
R. C.
,
1985
, “
Measurement of Local Mass Transfer on a Surface in the Region of the Base of a Protruding Cylinder with a Computer-Controlled Data Acquisition System
,”
Int. J. Heat Mass Transf.
,
28
(
5
), pp.
977
985
.
19.
Igarashi
,
T.
,
1985
, “
Heat Transfer From a Square Prism to an Air Stream
,”
Int. J. Heat Mass Transf.
,
28
(
1
), pp.
175
181
.
20.
Igarashi
,
T.
,
1986
, “
Local Heat Transfer from a Square Prism to an Air Stream
,”
Int. J. Heat Mass Transf.
,
29
(
5
), pp.
777
784
.
21.
Igarashi
,
T.
,
1987
, “
Fluid Flow and Heat Transfer Around Rectangular Cylinders (The Case of a Width/Height Ratio of a Section of 0.33∼1.5⁠)
,”
Int. J. Heat Mass Transf.
,
30
(
5
), pp.
893
901
.
22.
Fisher
,
E. M.
, and
Eibeck
,
P. A.
,
1990
, “
The Influence of a Horseshoe Vortex on Local Convective Heat Transfer
,”
ASME J. Heat Transfer
,
112
, pp.
329
335
.
23.
Martinez-Botas
,
R. F.
,
Lock
,
G. D.
, and
Jones
,
T. V.
,
1995
, “
Heat Transfer Measurements in an Annular Cascade of Transonic Gas Turbine Blades Using the Transient Liquid Crystal Technique
,”
ASME J. Turbomach.
,
117
, pp.
425
431
.
24.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1996
, “
Heat Transfer Inside and Downstream of Cavities Using Transient Liquid Crystal Method
,”
AIAA J. Thermophysics and Heat Transfer
,
10
(
3
), pp.
511
516
.
25.
Han, J. C., and Ekkad, S. V., 1996, “Turbine Blade Cooling and Heat Transfer Measurement Using a Transient Liquid Crystal Image Method,” Invited Paper for the 5th Colloquium on Turbomachinery Seoul National University Seoul, Korea, pp. 263–302.
26.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1998
, “
Determination of Local Heat Transfer Coefficient Base on Bulk Mean Temperature Using a Transient Liquid Crystal Technique
,”
Exp. Therm. Fluid Sci.
,
18
, pp.
142
149
.
27.
Critoph
,
R. E.
,
Holland
,
M. K.
, and
Fisher
,
M.
,
1998
, “
Comparisons of Steady State and Transient Methods for Measurement of Local Heat Transfer in Plate Fin-Tube Heat Exchangers Using Liquid Crystal Thermography with Radiant Heating
,”
Int. J. Heat Mass Transf.
,
42
, pp.
1
12
.
28.
Hwang
,
J. J.
, and
Cheng
,
C. S.
,
1999
, “
Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets
,”
ASME J. Heat Transfer
,
121
, pp.
683
690
.
29.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1987
, “
The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals
,”
J. Phys. E
,
20
, pp.
1195
1199
.
30.
Butler
,
R. J.
, and
Baughn
,
J. W.
,
1996
, “
The Effect of the Thermal Boundary Condition on Transient Method Heat Transfer Measurements on a Flat Plate With a Laminar Boundary Layer
,”
ASME J. Heat Transfer
,
118
, pp.
831
837
.
You do not currently have access to this content.