We conducted experiments on the effect of dissolving three different salts sodium chloride (NaCl), sodium sulfate Na2SO4 and magnesium sulfate MgSO4 in water droplets boiling on a hot stainless steel surface. Substrate temperatures were varied from 90°C to 220°C. We photographed droplets as they evaporated, and recorded their evaporation time. At surface temperatures that were too low to initiate nucleate boiling all three salts were found to reduce droplet evaporation rates because they lower the vapor pressure of water. In the nucleate boiling regime, low concentrations (<0.1 mol/l) of Na2SO4 and MgSO4 enhanced heat transfer because they prevented coalescence of vapor bubbles and produced foaming in the droplet, significantly reducing droplet lifetimes. Increasing the salt concentration further did not produce a corresponding increase in droplet boiling rate. Dissolved salts prevent bubble coalescence because they increase surface tension and stabilize the liquid film separating bubbles, and because electric charge that accumulates on the surfaces of bubbles produces a repulsive force, preventing them from approaching each other. Na2SO4 and MgSO4, which have high ionic strengths, produced a large amount of foaming in droplets and increased their boiling rate significantly. NaCl, which has low ionic strength, had little effect on droplet boiling.

1.
Jamialahmadi
,
M.
, and
Muller-Steinhagen
,
H.
,
1990
, “
Pool Boiling Heat Transfer to Electrolyte Solutions
,”
Chem. Eng. Process.
,
28
, pp.
79
88
.
2.
Najibi
,
S. H.
,
Muller-Steinhagen
,
H.
, and
Jamialahmadi
,
M.
,
1996
, “
Boiling and Non-Boiling Heat Transfer to Electrolyte Solutions
,”
Heat Transfer Eng.
,
17
(
4
), pp.
46
63
.
3.
Wu
,
W. T.
,
Yang
,
Y. M.
, and
Maa
,
J. R.
,
1998
, “
Nucleate Pool Boiling Enhancement by Means of Surfactant Additives
,”
Electronics
,
18
, pp.
195
209
.
4.
Hetsroni
,
G.
,
Zakin
,
J. L.
,
Lin
,
Z.
,
Mosyak
,
A.
,
Pancallo
,
E. A.
, and
Rozenblit
,
R.
,
2001
, “
The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling
,”
Int. J. Heat Mass Transf.
,
44
, pp.
485
497
.
5.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2000
, “
Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant
,”
ASME J. Heat Transfer
,
122
, pp.
708
715
.
6.
Finnerty, A. E., 1995, “Water-Based Fire-Extinguishing Agents,” Proceedings of Halon Options Technical Working Conference, Albuquerque, New Mexico, pp. 461–471.
7.
Qiao
,
Y. M.
, and
Chandra
,
S.
,
1997
, “
Experiments on Adding a Surfactant to Water Drops Boiling on a Hot Surface
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
673
689
.
8.
Qiao
,
Y. M.
, and
Chandra
,
S.
,
1998
, “
Spray Cooling Enhancement by Addition of a Surfactant
,”
ASME J. Heat Transfer
,
120
, pp.
92
98
.
9.
King, M. D., Yang, J. C., Chien, W. S., and Grosshandler, W. L., 1997, “Evaporation of a Small Water Droplet Containing an Additive,” Proceedings of the 32nd National Heat Transfer Conference, 4, pp. 45–57.
10.
Cui
,
Q.
,
Chandra
,
S.
, and
McCahan
,
S.
,
2001
, “
The Effect of Dissolving Gases or Solids in Water Droplets Boiling on a Hot Surface
,”
ASME J. Heat Transfer
,
123
, pp.
719
728
.
11.
Lessard
,
R. R.
, and
Zieminski
,
S. A.
,
1971
, “
Bubble Coalescence and Gas Transfer in Aqueous Electrolytic Solutions
,”
Ind. Eng. Chem. Fundam.
,
10
(
2
), pp.
260
269
.
12.
Zieminski
,
S. A.
, and
Whitemore
,
R. C.
,
1971
, “
Behavior of Gas Bubbles in Aqueous Electrolyte Solutions
,”
Chem. Eng. Sci.
,
26
, pp.
509
520
.
13.
Marrucci
,
G.
, and
Nicodemo
,
L.
,
1967
, “
Coalescence of Gas Bubbles in Aqueous Solution of Inorganic Electrolytes
,”
Chem. Eng. Sci.
,
22
, pp.
1257
1265
.
14.
Craig
,
V. S. J.
,
Ninham
,
B. W.
, and
Pashley
,
R. M.
,
1993
, “
The Effect of Electrolytes on Bubble Coalescence in Water
,”
J. Phys. Chem.
,
97
, pp.
10192
10197
.
15.
Marrucci
,
G.
,
1969
, “
A Theory of Coalescence
,”
Chem. Eng. Sci.
,
24
, pp.
975
985
.
16.
Oolman
,
T. O.
, and
Blanch
,
H. W.
,
1985
, “
Bubble Coalescence in Stagnant Liquids
,”
Chem. Eng. Commun.
,
43
, pp.
237
261
.
17.
Prince
,
M. J.
, and
Blanch
,
H. W.
,
1990
, “
Transition Electrolyte Concentrations for Bubble Coalescence
,”
AIChE J.
,
36
(
9
), pp.
1425
1429
.
18.
Keitel
,
G.
, and
Onken
,
U.
,
1982
, “
Inhibition of Bubble Coalescence by Solutes in Air/Water Dispersions
,”
Chem. Eng. Sci.
,
17
(
11
), pp.
1635
1638
.
19.
Cui, Q., Chandra, S., and McCahan, S., 2002, “The Effect of Dissolving Salts in Water Sprays Used for Quenching a Hot Surface, Part 2: Spray Cooling,” ASME J. Heat Transfer , submitted.
20.
Qiao
,
Y. M.
, and
Chandra
,
S.
,
1996
, “
Boiling of Droplets on a Hot Surface in Low Gravity
,”
Int. J. Heat Mass Transf.
,
39
, pp.
1379
1393
.
21.
Cisternas
,
L. A.
, and
Lam
,
E. J.
,
1991
, “
An Analytic Correlation for the Vapor Pressure of Aqueous and Non-Aqueous Solutions of Single and Mixed Electrolytes. Part II. Application and Extension
,”
Fluid Phase Equilib.
,
62
, pp.
11
27
.
22.
Pashley
,
R. M.
, and
Craig
,
V. S.
,
1997
, “
Effect of Electrolytes on Bubble Coalescence
,”
Langmuir
,
13
, pp.
4772
4774
.
23.
Chang
,
S. K.
,
Kang
,
Y.
, and
Kim
,
S. D.
,
1986
, “
Mass Transfer in Two- and Three-Phase Fluidized Beds
,”
J. Chem. Eng. Jpn.
,
19
(
6
), pp.
524
530
.
24.
Stairs
,
R. A.
,
1995
, “
Calculation of Surface Tension of Salt Solutions: Effective Polarizability of Solvated Ions
,”
Can. J. Chem.
,
73
, pp.
781
787
.
25.
Zaytsev, I. D., and Aseyev, G. G., 1992, Properties of Aqueous Solutions of Electrolytes, CRC Press, Inc.
You do not currently have access to this content.