Thermal analysis of laser densification of a dental porcelain powder bed has been investigated using a three-dimensional thermal finite element model, which encompasses (i) the incoming laser beam power with a Gaussian distribution, (ii) optical pyrometer simulation in addition to the closed-loop temperature control, (iii) powder-to-solid transition, (iv) temperature-dependent thermal convection, and (v) temperature and porosity-dependent thermal conduction and radiation. The simulation results are compared with the experiments. It is found that the predicted temperature distribution in the porcelain body matches the experiments very well. Further, the maximum discrepancy between experimental and simulated pyrometer temperatures is less than 8 percent. The simulation predicts that in order to achieve the desired microstructure of a dense dental porcelain body, the maximum local temperature during laser densification should be below 1573 K or the nominal surface temperature should be below 1273 K. Otherwise, the undesired microstructure (i.e., a leucite-free glass phase) forms.

1.
Cameron, T. B., 2004, private communication, Dentsply Cermco, Burlington, NJ.
2.
Beaman, J. J., Barlow, J. W., Bourell, D. L., Crawford, R. H., Marcus, H. L., and McAlea, K. P., 1997, Solid Freeform Fabrication: A New Direction in Manufacturing, Kluwer Academic Publishers, MA.
3.
Shaw, L., Li, X.-X., Wang, J.-W., Marcus, H. L., Cameron, T. B., and Kennedy, C., 2002, “Dental Restoration Through Laser Densification of Dental Porcelain Powder,” in Rapid Prototyping of Materials, F. D. S. Marquis and D. L. Bourell, eds., TMS, Warrendale, PA, pp. 107–118.
4.
Wang, J.-W., Li, X.-X., Shaw, L., Marcus, H. L., Cameron, T. B., and Kennedy, C., 2002, “Studies on Slurry Extrusion for Dental Restoration,” in the Proceedings of the 13th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 83–91.
5.
Li, X. X., Wang, J. W., Augustine, A., Shaw, J. L., Marcus, H. L., and Cameron, T. B., 2001, “Microstructure Evaluation for Multi-Materials Laser Densification of Dental Porcelains,” in the Proceedings of the 12th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 195–202.
6.
Weinsein, M., Katz, S., and Weinstein, A. B., 1962, “Fused Porcelain-to-Metal Teeth,” US Patent #: 3,052,982.
7.
Mackert
, Jr.,
J. R.
, and
Williams
,
A. L.
,
1996
, “
Microcracks in Dental Porcelain and Their Behavior during Multiple Firing
,”
J. Dent. Res.
,
75
(
7
), pp.
1484
1490
.
8.
Mackert
, Jr.,
J. R.
, and
Evans
,
A. L.
,
1991
, “
Effect of Cooling Rate on Leucite Volume Fraction in Dental Porcelains
,”
J. Dent. Res.
,
70
, pp.
137
139
.
9.
Mackert
, Jr.,
J. R.
,
Rueggeberg
,
F. A.
,
Lockwood
,
P. E.
,
Evans
,
A. L.
, and
Thompson
,
W. O.
,
1994
, “
Isothermal Anneal Effect on Microcrack Density around Leucite Particles in Dental Porcelain
,”
J. Dent. Res.
,
73
, pp.
1221
1227
.
10.
Kandis
,
M.
, and
Bergman
,
T. L.
,
1997
, “
Observation, Prediction, and Correlation of Geometric Shape Evolution Induced by Non-Isothermal Sintering of Polymer Powder
,”
ASME J. Heat Transfer
,
119
, pp.
824
831
.
11.
Zhang
,
Y.
, and
Faghri
,
A.
,
2000
, “
Thermal Modeling of Selective Area Laser Deposition of Titanium Nitride on a Finite Slab with Stationary and Moving Laser Beams
,”
Int. J. Heat Mass Transfer
,
43
(
20
), pp.
3835
3846
.
12.
Zhang
,
Y.
, and
Faghri
,
A.
,
Buckley
,
C. W.
, and
Bergman
,
T. L.
,
2000
, “
Three-Dimensional Sintering of Two-Component Metal Powders with Stationary and Moving Laser Beams
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
150
158
.
13.
Zhang
,
Y.
, and
Faghri
,
A.
,
1999
, “
Melting of a Subcooled Mixed Powder Bed with Constant Heat Flux Heating
,”
Int. J. Heat Mass Transfer
,
42
(
5
), pp.
775
788
.
14.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
1996
, “
Thermomechanical Modeling of Molten Metal Droplet Solidification Applied to Layered Manufacturing
,”
Mech. Mater.
,
24
, pp.
257
271
.
15.
Amon
,
C. H.
,
Beuth
,
J. L.
,
Merz
,
R.
,
Prinz
,
F. B.
, and
Weiss
,
L. E.
,
1998
, “
Shape Deposition Manufacturing with Microcasting: Processing, Thermal and Mechanical Issues
,”
J. Manuf. Sci. Eng.
,
120
(
3
), pp.
656
665
.
16.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
2001
, “
Successive Deposition of Metals in Solid Freeform Fabrication Processes Part 1: Thermomechanical Models of Layers and Droplet Columns
,”
J. Manuf. Sci. Eng.
,
123
(
4
), pp.
623
631
.
17.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
2001
, “
Successive Deposition of Metals in Solid Freeform Fabrication Processes Part 2: Thermomechanical Models of Adjacent Droplets
,”
J. Manuf. Sci. Eng.
,
123
(
4
), pp.
632
638
.
18.
Ong, R., Beuth, J. L., and Weiss, L. E., 2000, “Residual Stress Control Issues for Thermal Deposition of Polymers in SFF Processes,” in the Proceedings of the 11th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 209–218.
19.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Griffith
,
M. L.
,
2001
, “
A Process Map for Consistent Build Conditions in the Solid Freeform Fabrication of Thin-Walled Structures
,”
J. Manuf. Sci. Eng.
,
123
(
4
), pp.
615
622
.
20.
Vasinonta, A., Beuth, J. L., and Ong, R., 2001, “Melt Pool Size Control in Thin-Walled and Bulky Parts via Process Maps,” in the Proceedings of the 12th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 432–440.
21.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng., A
,
317
, pp.
59
64
.
22.
Shiomi, M., Matsumoto, M., Osakada, K., Abe, F., 2001, “Two-Dimensional Finite Element Simulation of Laser Rapid Prototyping, Simulation of Materials Processing: Theory, Methods and Applications,” in Proc. NUMIFORM 2001, K. Mori, ed., Toyohashi, Japan, A. A. Balkema Publishers, pp. 1059–1064.
23.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
, pp.
61
67
.
24.
Niebling, F., and Otto, A., 2001, “FE-Simulation of the Selective Laser Sintering Process of Metallic Powders,” in the Proceedings of 3rd International Conference on Laser Assisted Net Shaping LANE 2001, M. Geiger and A. Otto, eds., Meisenbach Verlag, Germany, August 2001, pp. 371–382.
25.
Dai
,
K.
, and
Shaw
,
L.
,
2001
, “
Thermal and Stress Modeling of Multi-Material Laser Processing
,”
Acta Mater.
,
49
, pp.
4171
4181
.
26.
Dai
,
K.
, and
Shaw
,
L.
,
2003
, “
The Size Effect on Stresses and Distortion of Laser Processed Multi-Material Components
,”
Metall. Mater. Trans. A
,
34A
, pp.
1133
1145
.
27.
Dai
,
K.
, and
Shaw
,
L.
,
2002
, “
Distortion Minimization of Laser-Processed Components through Control of Laser Scanning Patterns
,”
Rapid Prototyping J.
,
8
(
5
), pp.
270
276
.
28.
Dai, K., and Shaw, L., 2003, “Finite Element Modeling for Laser-Assisted Dental Restoration Process,” in Proc. of the 2003 NSF Design, Service and Manufacturing Grantees and Research Conference, R. G. Reddy, eds., Birmingham, AL, pp. 2292–2300.
29.
Dai
,
K.
,
Crocker
,
J.
,
Shaw
,
L.
, and
Marcus
,
H.
,
2003
, “
Modeling of Selective Area Laser Deposition (SALD) and SALD Vapor Infiltration of Silicon Carbide
,”
Rapid Prototyping J.
,
9
(
4
), pp.
231
239
.
30.
Dai
,
K.
, and
Shaw
,
L.
,
2004
, “
Thermal and Mechanical Finite Element Modeling of Laser Forming from Metal and Ceramic Powders
,”
Acta Mater.
,
52
(
1
), pp.
69
80
.
31.
Dai, K., and Shaw, L., 2002, “Preheating Effects on Multiple Materials Laser Densification,” in the Proceedings of the 13th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 392–399.
32.
Dai, K., and Shaw, L., 2002, “Finite Element Analysis of Distortion Minimization in Layer-by-Layer Laser-Processed Components,” in Rapid Prototyping of Materials, F. D. S. Marquis, and D. L. Bourell, eds., TMS (the Minerals, Metals & Materials Society), Warrendale, PA, pp. 29–39.
33.
Mackert
,
J. R.
,
Butts
,
M. B.
,
Morena
,
R.
, and
Fairhurst
,
C. W.
,
1986
, “
Phase Changes in a Leucite-Containing Dental Porcelain Frit
,”
J. Am. Ceram. Soc.
,
69
(
4
), pp.
C-69–C-72
C-69–C-72
.
34.
Touloukian, Y. S., and DeWitt, D. P., 1972, Thermophysical Properties of Matter, Volume 8, THERMAL RADIATIVE PROPERTIES: Nonmetallic Solids, IFI/Plenum, New York, NY.
35.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter, Volume 2, THERMAL CONDUCTIVITY: Nonmetallic Solids, IFI/Plenum, New York, NY.
36.
Touloukian, Y. S., and Buyco, E. H., 1970, Thermophysical Properties of Matter, Volume 5, SPECIFIC HEAT: Nonmetallic Solids, IFI/Plenum, New York, NY.
37.
Schneider, S. J., 1991, Engineered Materials Handbook, Volume 4: Ceramics and Glasses, ASM International, Metals Park, OH.
38.
ANSYS Inc., 2002, ANSYS On-Line Reference Manuals: The ANSYS Elements Reference, Release 6.1, ANSYS Inc., Canonsburg, PA.
39.
Sih, S. S., and Barlow, J. W., 1995, “The Prediction of the Thermal Conductivity of Powders,” in the Proceedings of the 6th Annual SFF Symposium, H. Marcus, J. Beaman, D. Bourell, J. Barlow, and R. Crawford, eds., The University of Texas at Austin, pp. 397–401.
40.
Sih, S. S., and Barlow, J. W., 1994, “Measurement and Prediction of the Thermal Conductivity of Powders at High Temperature,” in the Proceedings of the 5th Annual SFF Symposium H. Marcus, J. Beaman, J. Barlow, D. Bourell, and R. Crawford, eds., The University of Texas at Austin, pp. 321–329.
41.
Poirier, D. R., and Geiger, G. H., 1994, Transport Phenomena in Materials Processing, The Minerals, Metals and Materials Society, Warrendale, PA.
42.
Sih, S. S., and Barlow, J. W., 1995, “Emissivity of Powder Beds,” in the Proceedings of the 6th Annual SFF Symposium, H. Marcus, J. Beaman, D. Bourell, J. Barlow, and R. Crawford, eds., The University of Texas at Austin, pp. 402–408.
43.
E. U. Schlunder, (ed.), 1983, Heat Exchanger Design Handbook, Hemisphere Publishing Corporation, New York, NY.
44.
Mazumder, J., and Kar, A., 1995, Theory and Application of Laser Chemical Vapor Deposition, Plenum Publishing Co., New York, NY.
45.
http://140.114.58.65/heat%20transfer/pdf/HTchap12.pdf
46.
The Pyrometer Instrument Co., Inc., 1996, Pyrofiber Models 865 & 1550—Operation Manual, Revision: 8.0, Northvale, NJ.
47.
Li, X.-X., and Shaw, L., 2004, “Microstructure of Dental Porcelains in a Laser-Assisted Rapid Prototyping Process,” Dental Mater., in press.
48.
Sanders
,
D. J.
,
1984
, “
Temperature Distributions Produced by Scanning Gaussian Laser Beams
,”
Appl. Opt.
,
23
(
1
), pp.
30
36
.
49.
Modest
,
M. F.
, and
Abakians
,
H.
,
1986
, “
Evaporative Cutting of a Semi-Infinite Body with a Moving CW Laser
,”
ASME J. Heat Transfer
,
108
, pp.
602
607
.
50.
Roy
,
S.
, and
Modest
,
M. F.
,
1993
, “
CW Laser Machining of Hard Ceramics; Effects of Three-Dimensional Conduction, Variable Properties and Various Laser Parameters
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3515
3528
.
You do not currently have access to this content.