The enhancement of heat transfer by an electric field to a spherical droplet translating at intermediate Reynolds number is numerically investigated using a finite volume method. Two heat transfer limits are considered. The first limit is the external problem where the bulk of the resistance is assumed to be in the continuous phase. Results show that the external Nusselt number significantly increases with electric field strength at all Reynolds numbers. Also, the drag coefficient increases with electric field strength. The enhancement in heat transfer is higher with lower ratio of viscosity of the dispersed phase to the viscosity of the continuous phase. The second heat transfer limit is the internal problem where the bulk of the resistance is assumed to be in the dispersed phase. Results show that the steady state Nusselt number for a combined electrically induced and translational flow is substantially greater than that for purely translational flow. Furthermore, for a drop moving at intermediate Reynolds number, the maximum steady state Nusselt number for a combined electrically induced and translational flow is slightly greater than that for a purely electric field driven motion in a suspended drop.

1.
Taylor
,
G. I.
, 1966, “
Studies in Electrohydrodynamics: the Circulation Produced in a Drop by an Electric Field
,”
Proc. R. Soc. London, Ser. A
1364-5021
291
, pp.
159
166
.
2.
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Chung
,
J. N.
, 1997,
Transport Phenomena with Drops and Bubbles
,
Springer
New York.
3.
Abramzon
,
B.
, and
Borde
,
I.
, 1980, “
Conjugate Unsteady Heat Transfer From a Droplet in Creeping Flow
,”
AIChE J.
0001-1541,
26
, pp.
536
544
.
4.
Oliver
,
D. L. R.
,
Carleson
,
T. E.
, and
Chung
,
J. N.
, 1985, “
Transient Heat Transfer to a Fluid Sphere Suspended in an Electric Field
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1005
1009
.
5.
Chung
,
J. N.
, and
Oliver
,
D. L. R.
, 1990, “
Transient Heat Transfer in a Fluid Sphere Translating in an Electric Field
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
84
91
.
6.
Griffiths
,
S. K.
, and
Morrison
,
F. A.
, Jr.
, 1979, “
Low Peclet Number Heat and Mass Transfer From a Drop in an Electric Field
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
484
488
.
7.
Sharpe
,
L.
, Jr.
, and
Morrison
,
F. A.
, Jr.
, 1984, “
Numerical Analysis of Heat and Mass Transfer From Fluid Spheres in an Electric Field
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
337
342
.
8.
Chang
,
L. S.
, and
Berg
,
J. C.
, 1983, “
Fluid Flow and Transfer Behavior of a Drop Translating in an Electric Field at Intermediate Reynolds Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
823
831
.
9.
Feng
,
J. Q.
, and
Scott
,
T. C.
, 1996, “
A Computational Analysis of Electrohydrodynamics of a Leaky Dielectric Drop in an Electric Field
,”
J. Fluid Mech.
0022-1120,
311
, pp.
289
326
.
10.
Subramanian
,
R.
, 2005, “
Heat Transfer to a Droplet Translating in an Electric Field
,” M.S. thesis, University of Cincinnati.
11.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
, New York.
12.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
,
Academic
, New York.
13.
Comer
,
J. K.
, and
Kleinstreuer
,
C.
, 1995, “
A Numerical Investigation of Laminar Flow Past Nonspherical Solids and Droplets
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
170
175
.
14.
Comer
,
J. K.
, and
Kleinstreuer
,
C.
, 1995, “
Computational Analysis of Convection Heat Transfer to Non-spherical Particles
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
3171
3180
.
15.
Oliver
,
D. L. R.
, and
Chung
,
J. N.
, 1987, “
Flow About a Fluid Sphere at Low to Moderate Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
177
, pp.
1
18
.
16.
Jog
,
M. A.
, and
Hader
,
M. A.
, 1997, “
Transient Heat Transfer to a Spheroidal Liquid Drop Suspended in an Electric Field
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
411
418
.
17.
Hader
,
M. A.
, and
Jog
,
M. A.
, 1998, “
Effect of Drop Deformation on Heat Transfer to a Drop Suspended in an Electric Field
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
682
689
.
You do not currently have access to this content.