In the present paper, the characteristic atmospheric pool boiling curve is qualitatively reproduced for water on a temperature controlled thin copper strip having comparable length and breadth by the coupled map lattice (CML) method using a three-dimensional boiling field model. The basic objective of the work is to improve the prediction of the critical heat flux (CHF) with respect to the 2D CML model of Ghoshdastidar et al. (Ghoshdastidar, P. S., Kabelac, S., and Mohanty, A., 2004, “Numerical Modelling of Atmospheric Pool Boiling by the Coupled Map Lattice Method,” J. Mech. Eng. Sci., IMechE Part C, 218, pp. 195–205). The work models saturated pool boiling of water at 1bar on a large (much larger than the minimum wavelength of 2D Taylor waves) and thin horizontal copper strip. The pool height is 0.7mm, indicating thin film boiling. In the present model, it is assumed that boiling is governed by (a) nucleation from cavities on a heated surface, (b) thermal diffusion, (c) bubble rising motion and associated convection, (d) phase change and (e) Taylor instability. The changes with respect to the 2D model are primarily with respect to 3D modeling of thermal diffusion and 2D distribution of nucleating cavity sizes. The predicted CHF is 1.57MWm2 as compared to the actual value of 1.3 and 0.36MWm2 predicted by the 2D CML model of Ghoshdastidar et al. (see above). It can be said that for the first time a coupled map lattice method which is essentially qualitative in nature has been able to predict the CHF of saturated pool boiling of water at 1bar very close to the actual value. Furthermore, a sensitivity analysis shows that the model gives physically realistic and stable results.

1.
Nukiyama
,
S.
, 1934, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
J. Japan Soc. Mech. Engrs.
,
37
, pp.
367
374
Nukiyama
,
S.
, [Translation:
Int. J. Heat Mass Transfer
0017-9310,
9
. pp.
1419
1432
(1966)].
2.
Drew
,
T. B.
, and
Mueller
,
C.
, 1937, “
Boiling
,”
Trans. AIChE
,
33
, pp.
449
473
.
3.
Jakob
,
M.
, 1949,
Heat Transfer
,
Wiley
, New York.
4.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
115
, pp.
659
669
.
5.
Sakashita
,
H.
, and
Kumada
,
T.
, 2001, “
Method for Predicting Boiling Curves of Saturated Nucleate Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
673
682
.
6.
He
,
Y.
,
Shoji
,
M.
, and
Maruyama
,
S.
, 2001, “
Numerical Study of High Heat Flux Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2357
2373
.
7.
Maruyama
,
S.
,
Shoji
,
M.
, and
Shimizu
,
S.
, 1992, “
A Numerical Simulation of Transition Boiling Heat Transfer
,”
Proc. Second JSME-KSME Thermal Engineering Conference
, Kitakyusyu, Vol.
3
, pp.
345
348
.
8.
Kaneko
,
K.
, 1993,
Theory and Applications of Coupled Map Lattices
,
Wiley
, Chichester, UK.
9.
Yanagita
,
T.
, and
Kaneko
,
K.
, 1993, “
Coupled Map Lattice Model for Convection
,”
Phys. Lett. A
0375-9601,
175
, pp.
415
420
.
10.
Sadasivan
,
P.
,
Unal
,
C.
, and
Nelson
,
R. A.
, 1995, “
Nonlinear Aspects of High Heat Flux Nucleate Boiling Heat Transfer
,” Report No. LA-UR-95-609.
11.
Shoji
,
M.
, and
Tajima
,
K.
, 1997, “
Mathematical Simulation Model of Boiling: Modes and Chaos
,” in
Convective Flow and Pool Boiling Conference
,
Kloster Irsee
, Germany, May 18–23.
12.
Shoji
,
M.
, 1998, “
Boiling Simulator—A Simple Theoretical Model of Boiling
,” in
Third International Conference on Multiphase Flow
,
Lyon
, France, June 8–12.
13.
Ellepola
,
J.
, and
Kenning
,
D.
, 1996, “
Nucleation Site Interactions in Pool Boiling
,” in
Proceedings of the Second European Thermal Sciences and 14th UK National Heat Transfer Conference
, Rome, Italy, May 29–31.
14.
Nelson
,
R.
,
Kenning
,
D.
, and
Shoji
,
M.
, 1996, “
Nonlinear Dynamics in Boiling Phenomena
,”
J. Heat Transfer Soc. Jpn.
,
35
, pp.
22
34
.
15.
Nelson
,
R.
,
Kenning
,
D.
, and
Shoji
,
M.
, 1997, “
Nonlinear Effects and Behavior in Nucleate Boiling
,” in
Fourth Experimental Chaos Conference
, Boca Raton, FL, August 6–8.
16.
Yanagita
,
T.
, 1992, “
Phenomenology for Boiling: A Coupled Map Lattice Model
,”
Chaos
1054-1500,
2
, pp.
343
350
.
17.
Ghoshdastidar
,
P. S.
,
Kabelac
,
S.
, and
Mohanty
,
A.
, 2004, “
Numerical Modelling of Atmospheric Pool Boiling by the Coupled Map Lattice Method
,”
J. Mech. Eng. Sci.
, IMechE Part C,
218
, pp.
195
205
.
18.
Kenning
,
D. B. R.
, 1977, “
Pool Boiling
,” in
Two-phase Flow and Heat Transfer
(
D.
Butterworth
and
G. F.
Hewitt
, eds.),
Oxford University Press
, London, Chap. 7.
19.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
, 1997,
Computational Fluid Mechanics and Heat Transfer
, 2nd ed.,
Taylor and Francis
, London, pp.
69
, 94.
20.
Lienhard
,
J. H.
, 1981,
A Heat Transfer Textbook
,
Prentice–Hall
, Englewood Cliffs, NJ, Chap. 10.
21.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis, Research Laboratory, Los Angeles and Ramowoolridge Corporation, University of California, Los Angeles.
22.
Holman
,
J. P.
, 1981,
Heat Transfer
, 5th ed.,
McGraw–Hill
, Maidenhead, UK, p.
536
.
23.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
Wiley
, Chichester, UK.
24.
van Stralen
,
S.
, and
Cole
,
R.
, 1979,
Boiling Phenomena
,
Hemisphere
, New York, Vol.
1
.
You do not currently have access to this content.