One of the promising liquid cooling techniques for microelectronics is attaching a microchannel heat sink to, or directly fabricating microchannels on, the inactive side of the chip. A stacked microchannel heat sink integrates many layers of microchannels and manifold layers into one stack. Compared with single-layered microchannels, stacked microchannels provide larger flow passages, so that for a fixed heat load the required pressure drop is significantly reduced. Better temperature uniformity can be achieved by arranging counterflow in adjacent microchannel layers. The dedicated manifolds help to distribute coolant uniformly to microchannels. In the present work, a stacked microchannel heat sink is fabricated using silicon micromachining techniques. Thermal performance of the stacked microchannel heat sink is characterized through experimental measurements and numerical simulations. Effects of coolant flow direction, flow rate allocation among layers, and nonuniform heating are studied. Wall temperature profiles are measured using an array of nine platinum thin-film resistive temperature detectors deposited simultaneously with thin-film platinum heaters on the backside of the stacked structure. Excellent overall cooling performance (0.09°CWcm2) for the stacked microchannel heat sink has been shown in the experiments. It has also been identified that over the tested flow rate range, counterflow arrangement provides better temperature uniformity, while parallel flow has the best performance in reducing the peak temperature. Conjugate heat transfer effects for stacked microchannels for different flow conditions are investigated through numerical simulations. Based on the results, some general design guidelines for stacked microchannel heat sinks are provided.

1.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
, 2003, “
Air-Cooling Extension-Performance Limits for Processor Cooling Applications
,”
IEEE SEMI-THERM Symposium
, San Jose, CA, Mar. 11–13, pp.
74
81
.
2.
Xu
,
G.
,
Guenin
,
B.
, and
Vogel
,
M.
, 2004, “
Extension of Air Cooling for High Power Processors
,”
Inter Society Conference on Thermal Phenomena
, Las Vegas, NV, Jun. 1–4, pp.
186
193
.
3.
Webb
,
R.
, 2005, “
Next Generation Devices for Electronic Cooling With Heat Rejection to Air
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
2
9
.
4.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V.
, 2005, “
A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
38
48
.
5.
Kandlikar
,
S.
, and
Grande
,
W.
, 2004, “
Evaluation of Single Phase Flow in Microchannels for High Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Second International Conference on Microchannels and Minichannels
, Rochester, NY, Jun. 17–19, Paper No. ICMM2004-2321, pp.
67
76
.
6.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
, 1994, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Multiple Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
482
486
.
7.
Amon
,
C. H.
,
Yao
,
S.-C.
,
Wu
,
C.-F.
, and
Hsieh
,
C.-C.
, 2005, “
Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
66
75
.
8.
Xia
,
C.
, 2002, “
Spray/Jet Cooling for Heat Flux High to 1kW∕cm2
,”
18th IEEE SEMI-THERM Symposium
, San Jose, March 12–14, pp.
159
163
.
9.
Heffington
,
S. N.
, 2001, “
Vibration-Induced Droplet Atomization Heat Transfer Cell for Cooling of Microelectronic Components
,”
Proceedings of IPACK 01
, Kauai, HI, July 6–13, Paper No. IPACK2001-15567.
10.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W.
, 2000, “
Combined Effects of Sub-Cooling and Operating Pressure on the Performance of a Two-Chamber Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
1
), pp.
61
69
.
11.
Tuckerman
,
D. B.
, 1984, “
Heat Transfer Microstructures for Integrated Circuits
,” Ph.D. thesis, Stanford University.
12.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Heat Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
2
), pp.
321
332
.
13.
Garimella
,
S. V.
, and
Singhal
,
V.
, 2004, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
15
25
.
14.
Wei
,
X. J.
, and
Joshi
,
Y. K.
, 2003, “
Optimization Study of Stacked Microchannel Heat Sinks for Microelectronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
55
61
.
15.
Koo
,
J.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K.
, 2005, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Architectures
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
49
58
.
16.
Lee
,
D.-Y.
, and
Vafai
,
K.
, 1999, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1555
1568
.
17.
Wu
,
P.
, and
Little
,
W. A.
, 1983, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thompson Refrigerators
,”
Cryogenics
0011-2275,
23
(
5
), pp.
273
277
.
18.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H. H.
, and
Zemel
,
J.
, 1991, “
Gas and Liquid Flow in Small Channels
,”
Micromechanical Sensors, Actuators and Systems
,
D.
Cho
,
R.
Warrington
, Jr.
,
H.
Bau
,
C.
Friedrich
,
J.
Jara-Almonte
,
J.
Liburdy
, and
A. P.
Pisano
, eds., ASME New York,
32
, pp.
49
60
.
19.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
0891-6152,
7
, pp.
249
264
.
20.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Heat Transfer Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
0891-6152,
7
, pp.
265
283
.
21.
Papautsky
,
I.
,
Brazzle
,
J.
,
Ammel
,
T.
, and
Frazier
,
A. B.
, 1999, “
Laminar Fluid Behavior in Microchannels Using Micropolar Fluid Theory
,”
Sens. Actuators, A
0924-4247,
73
, pp.
101
108
.
22.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
210
, pp.
149
157
.
23.
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
142
148
.
24.
Mala
,
G. M.
,
Li
,
D.
,
Werner
,
C.
,
Jacobasch
,
H. J.
, and
Ning
,
Y. B.
, 1997, “
Flow Characteristics of Water Through Microchannels Between Two Parallel Plates With Electrokinetic Effects
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
489
496
.
25.
Tso
,
C. P.
, and
Mahulikar
,
S. P.
, 1998, “
The Use of the Brinkman Number for Single Phase Forced Convective Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
12
), pp.
1759
1769
.
26.
Xu
,
B.
,
Ooi
,
K. T.
, and
Wong
,
N. T.
, 2000, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
, pp.
1165
1176
.
27.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2549
2565
.
28.
Liu
,
D.
, and
Garimella
,
S. V.
, 2002, “
Investigation of Liquid Flow in Microchannels
,”
Eighth AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, St. Louis, MO, Paper No. AIAA 2002-2776, pp.
1
10
.
29.
Lee
,
P.
, and
Garimella
,
S. V.
, 2003, “
Experimental Investigation of Heat Transfer in Microchannels
,”
ASME Summer Heat Transfer Conference
, Las Vegas, NV, Paper No. HT2003-47293, pp.
1
7
.
30.
Kohl
,
M. J.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Sadowski
,
D. L.
, 2005, “
An Experimental Investigation of Microchannel Flow With Internal Pressure Measurements
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
15518
1533
.
31.
Phillips
,
R. J.
, 1990, “
Microchannel Heat Sinks
,”
Advances in Thermal Modeling of Electronic Components and Systems
,
A.
Bar-Cohen
and
A. D.
Kraus
, eds.,
Hemisphere
,
New York
, Vol.
2
, pp.
109
184
.
32.
Weisberg
,
A.
, and
Bau
,
H. H.
, 1992, “
Analysis of Microchannels for Integrated Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
10
), pp.
2465
2474
.
33.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Micro-Channel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
399
415
.
34.
Vafai
,
K.
, and
Zhu
,
L
, 1999, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
2287
2297
.
35.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2005, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
127
(
1
) pp.
49
58
.
36.
Harpole
,
G. M.
, and
Eninger
,
J. E.
, 1991, “
Micro-Channel Heat Exchanger Optimization
,”
Seventh IEEE SEMI-THERM Symposium
, Scottsdale, AZ, February 12–14, pp.
59
63
.
37.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
, 1996, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,”
Proceedings of I-THERM V
, pp.
251
257
.
38.
Bau
,
H. H.
, 1998, “
Optimization of Conduits’ Shape in Micro Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2717
23
.
39.
Hrnjak
,
P.
, 2004, “
Developing Adiabatic Two Phase Flow in Headers-Distribution Issue in Parallel Flow Microchannel Heat Exchangers
,”
Heat Transfer Eng.
0145-7632,
25
(
3
), pp.
61
68
.
40.
Webb
,
R. L.
, 2003, “
Effect of Manifold Design on Flow Distribution in Parallel Micro-Channels
,”
IPack’03
, Maui, HI, July, pp. 527–535.
41.
Wei
,
X. J.
,
Joshi
, and
Y. K.
, 2004, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
60
66
.
42.
Ayon
,
A. A.
,
Braff
,
R. A.
,
Bayt
,
R.
,
Sawin
,
H. H.
, and
Schmidt
,
M. A.
, 1999, “
Influence of Coil Power on the Etching Characteristics in a High Density Plasma Etcher
,”
J. Electrochem. Soc.
0013-4651,
146
(
7
), pp.
2730
2736
.
You do not currently have access to this content.