Miniature loop heat pipes (mLHPs) are coming up with a promising solution for the thermal management of futuristic electronics systems. In order to implement these devices inside compact electronics, their evaporator has to be developed with small thickness while preserving the unique thermal characteristics and physical concept of the loop scheme. This paper specifically addresses the design and testing of a mLHP with a flat evaporator only 5mm thick for the cooling of high performance microprocessors for electronic devices. A novel concept was used to achieve very small thickness for the mLHP evaporator in which the compensation chamber was positioned on the sides of the wick structure and incorporated in the same plane as the evaporator. This is unlike the conventional design of the flat evaporator for mLHP in which the compensation chamber, as a rule, adds to the overall thickness of the evaporator. The loop was made from copper with water as the heat transfer fluid. For capillary pumping of the working fluid around the loop, a sintered nickel wick with 35μm pore radius and 75% porosity was used. In the horizontal orientation, the device was able to transfer heat fluxes of 50Wcm2 at a distance of up to 150mm by using a transport line with 2mm internal diameter. In the range of applied power, the evaporator was able to achieve steady state without any temperature overshoots or symptoms of capillary structure dryouts. For the evaporator and condenser at the same level and under forced air cooling, the minimum value of 0.62°CW for mLHP thermal resistance from evaporator to condenser (Rec) was achieved at a maximum heat load of 50W with the corresponding junction temperature of 98.5°C. The total thermal resistance (Rt) of the mLHP was within 1.55.23°CW. At low heat loads, the mLHP showed some thermal and hydraulic oscillations in the transport lines, which were predominately due to the flow instabilities imposed by parasitic heat leaks to the compensation chamber. It is concluded form the outcomes of the present investigation that the proposed design of the mLHP evaporator can be effectively used for the thermal control of the compact electronic devices with high heat flux capabilities.

1.
Mochizuki
,
M.
,
Saito
,
Y.
,
Nguyen
,
T.
,
Wuttijumnong
,
V.
,
Wu
,
X.
, and
Nguyen
,
T.
, 2005, “
Revolution in Fan Heat Sink Cooling Technology to Extend and Maximize Air Cooling for High Performance Processors in Laptop∕Desktop∕Server Application
,”
Proceedings of the IPACK2005
,
San Francisco, CA
, ASME Paper No. 73286.
2.
Saucius
,
I.
,
Prasher
,
R.
,
Chang
,
J.
,
Erturk
,
H.
,
Chrysler
,
G.
,
Chiu
,
C.
, and
Mahajan
,
R.
, 2005, “
Thermal Performance and Key Challenges for Future CPU Cooling Technologies
,”
Proceedings of the IPACK2005
,
San Francisco, CA
, ASME Paper No. 73242.
3.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Nguyen
,
Ti.
,
Wuttijumnong
,
V.
, and
Wu
,
X.
, 2004, “
Practical Application of Heat Pipe and Vapour Chamber for Cooling High Performance Personal Computer
,”
Proceedings of the 13th International Heat Pipe Conference
,
Shanghai, P. R. China
, pp.
23
30
.
4.
Moon
,
S. H.
,
Hwang
,
G.
,
Yun
,
H. G.
,
Choy
,
T. G.
, and
Kang
,
Y.
II.
, 2002, “
Improving Thermal Performance of Miniature Heat Pipe for Notebook PC Cooling
,”
Microelectron. Reliab.
0026-2714,
42
, pp.
135
140
.
5.
Nguyen
,
T.
,
Mochizuki
,
M.
,
Mashiko
,
K.
,
Sauciuc
,
I.
, and
Boggs
,
R.
, 2000, “
Advanced Cooling System Using Miniature Heat Pipes in Mobile PC
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
1
), pp.
86
90
.
6.
Xie
,
H.
,
Aghazadeh
,
M.
,
Lui
,
W.
, and
Haley
,
K.
, 1996, “
Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-Notebooks
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
19
(
1
), pp.
54
65
.
7.
Agata
,
H.
,
Kiyooka
,
F.
,
Mochizuki
,
M.
,
Mashiko
,
K.
, and
Saito
,
Y.
, 2004, “
Advanced Thermal Solution Using Vapour Chamber Technology for Cooling High Performance Desktop Computer
,”
Proceedings of the First International Symposium on Micro and Nano Technology
,
Honolulu, HI
, Paper No. 15331.
8.
Hironori
,
K.
,
Hitoshi
,
S.
, and
Takeshi
,
N.
, 2005 “
High Performance Liquid Cooling Module for Electronic Equipment
,” Hitachi Cable Review Report No. 24.
9.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J. M.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2002, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
3
), pp.
347
355
.
10.
Maydanik
,
Y. F.
, and
Fershtater
,
Y. G.
, 1997, “
Theoretical Basis and Classification of Loop Heat Pipes and Capillary Pumped Loops
,”
Proceedings of the Tenth International Heat Pipe Conference
,
Stuttgart, Germany
, Keynote Lecture X-7.
11.
Hoang
,
T. T.
,
O’Connell
,
T. A.
,
Ku
,
J.
,
Butler
,
C. D.
, and
Swanson
,
T. D.
, 2003, “
Miniature Loop Heat Pipes for Electronic Cooling
,”
Proceedings of the IPACK2003
,
Maui, HI
, ASME Paper No. 35245.
12.
Kaya
,
T.
, and
Ku
,
J.
, 2003, “
Thermal Operational Characteristics of a Small Loop Heat Pipe
,”
J. Thermophys. Heat Transfer
0887-8722,
17
, pp.
464
470
.
13.
Delil
,
A. A. M.
,
Maydanik
,
Y. F.
, and
Gerhart
,
C.
, 2003, “
Development of Different Novel Loop Heat Pipes Within the ISTC—1360 Project
,”
Proceedings of the 33rd International Conference on Environmental Systems
,
Vancouver, Canada
, SAE Paper No. 2003-01–2383.
14.
Chu
,
C. I.
,
Wu
,
S. C.
,
Chen
,
P. L.
, and
Chen
,
Y. M.
, 2004, “
Design of Miniature Loop Heat Pipe
,”
Heat Transfer Asian Res.
1099-2871,
33
(
1
), pp.
42
52
.
15.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Mochizuki
,
M.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
, 2005, “
Experimental Investigation of the Miniature Loop Heat Pipe With Flat Evaporator
,”
Proceedings of the IPACK2005
,
San Francisco, CA
, ASME Paper No. 73498.
16.
Chernysheva
,
M. A.
,
Vershinin
,
S. V.
, and
Maydanik
,
Y. F.
, 2002, “
Development and Test Results of Loop Heat Pipes With a Flat Evaporator
,”
Proceedings of the 12th International Heat Pipe Conference
,
Moscow Russia
, pp.
134
138
.
17.
Delil
,
A. A. M.
,
Baturkin
,
V.
,
Fridrichson
,
Y.
,
Khmelev
,
Y.
, and
Zhuk
,
S.
, 2002, “
Experimental Results of Heat Transfer Phenomena in a Miniature Loop Heat Pipe With a Flat Evaporator
,”
Proceedings of the 12th International Heat Pipe Conference
,
Moscow, Russia
, pp.
126
133
.
18.
Kiseev
,
V. M.
,
Nepomnyashy
,
A. S.
,
Gruzdova
,
N. L.
, and
Kim
,
K. S.
, 2003, “
Miniature Loop Heat Pipes for CPU Cooling
,”
Proceedings of the Seventh International Heat Pipe Symposium
,
Jeju, Korea
.
19.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
, 2005, “
Miniature Loop Heat Pipes: A Promising Means for Cooling Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
290
296
.
20.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Mochizuki
,
M.
,
Saito
,
Y.
,
Nguyen
,
T.
,
Kiyooka
,
F.
, and
Wuttijumnong
,
V.
, 2006, “
Thermal Performance of Miniature Loop Heat Pipe Operating Under Different Heating Modes
,”
Proceedings of the ITherm 2006
,
San Diego, CA
, pp.
557
562
.
21.
Cheung
,
K.-H.
,
Hoang
,
T. T.
,
Ku
,
J.
, and
Kaya
,
T.
, 1998, “
Thermal Performance and Operational Characteristics of Loop Heat Pipe (NRL LHP)
Proceedings of the 28th International Conference on Environmetal Systems
,
Danvers, MA
, SAE Paper No. 981813.
22.
Dunn
,
P. D.
, and
Reay
,
D. A.
, 1994,
Heat Pipes
,
Pergamon
,
Oxford
.
23.
Cengel
,
Y. A.
, and
Turner
,
R. H.
, 2001,
Fundamentals of Thermal-Fluid Sciences
,
McGraw Hill
,
New York
, Chaps. 18 and 19.
24.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
London
.
25.
Alexander
,
E. G.
, 1972, “
Structure-Property Relationships in Heat Pipe Wicking Materials
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
26.
Maydanik
,
Y. F.
,
Solodovnik
,
N
, and
Fershtater
,
Y.
, 1995, “
Investigation of Dynamic and Stationary Characteristics of a Loop Heat Pipe
,”
Proceedings of the Ninth International Heat Pipe Conference
,
Albuquerque NM
, pp.
1002
1006
.
27.
Ku
,
J.
,
Ottenstein
,
L.
,
Kobel
,
M.
,
Rogers
,
P.
, and
Kaya
,
T.
, 2001, “
Temperature Oscillations in Loop Heat Pipe Operation
,”
AIP Conf. Proc.
0094-243X
552
(
1
), pp.
255
262
.
28.
Chen
,
Y.
,
Groll
,
M.
,
Mertz
,
R.
,
Maydanik
,
Y. F.
, and
Vershinin
,
S. V.
, 2005, “
Steady-State and Transient Performance of a Miniature Loop Heat Pipe
,”
Proceedings of the Third International Conference on Microchannels and Minichannels
,
Toronto, Canada
, Paper No. 75122.
29.
Mo
,
Q.
,
Liang
,
J.
, 2006, “
Operational Performance of a Cryogenic Loop Heat Pipe with Insufficient Working Fluid Inventory
,”
Int. J. Refrig.
0140-7007,
29
, pp.
519
527
.
30.
Pastukhov
,
V. G.
,
Maidanik
,
Y. F.
,
Vershinin
,
C. V.
,
Korukov
,
M. A.
, 2003, “
Miniature Loop Heat Pipes for Electronics Cooling
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1125
1135
.
31.
Devarakonda
,
A.
,
Xiong
,
D.
, and
Beach
,
D. E.
, 2005, “
Intermediate Temperature Water Heat Pipe Tests
,”
Proceedings of the Space Technology and Applications International Forum
,
Albuquerque, NM
, NASA Report No. TM-2005-213581.
You do not currently have access to this content.