A method based on a novel ultrasound technique and inverse heat transfer analysis was developed to study the transient thermal contact resistance (TCR) at the early stage of a rapid contact solidification process. This promising technique is nonintrusive and, therefore, provides no distortion to the contact surface as well as the heat transfer process. The effects of impact velocity and initial molten metal temperature on TCR were investigated in detail. An empirical equation that correlates the variable TCR with the initial and interfacial conditions was introduced utilizing the experimental data.
1.
Bennett
, T.
, and Poulikakos
, D.
, 1994, “Heat Transfer Aspects of Splat-Quench Solidification: Modeling and Experiment
,” J. Mater. Sci.
0022-2461, 29
, pp. 2025
–2039
.2.
Hayes
, D. J.
, Wallace
, D. B.
, and Hayes
, M. T.
, 1992, “Picoliter Solder Droplet Dispensing
,” Proceedings of the ISHM'92
, San Francisco, pp. 316
–321
.3.
Liu
, Q.
, and Orme
, M.
, 2001, “On Precision Droplet-Based Net-Form Manufacturing Technology
,” Proc. Inst. Mech. Eng., Part B
0954-4054, 215
, pp. 1333
–1355
.4.
Amon
, C. H.
, Beuth
, J. L.
, Merz
, R.
, Prinz
, F. B.
, and Weiss
, L. E.
, 1998, “Shape Deposition Manufacturing With Microcasting: Processing, Thermal and Mechanical Issues
,” ASME J. Manuf. Sci. Eng.
1087-1357, 120
, pp. 656
–665
.5.
Tong
, A. Y.
, and Holt
, B. R.
, 1997, “Numerical Study on the Solidification of a Liquid Metal Droplets Impacting Onto a Substrate
,” Numer. Heat Transfer, Part A
1040-7782, 31
, pp. 797
–817
.6.
Waldvogel
, J. M.
, and Poulikakos
, D.
, 1997, “Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,” Int. J. Heat Mass Transfer
0017-9310, 40
, pp. 295
–309
.7.
Trapaga
, G.
, Matthys
, E. F.
, Valencia
, J. J.
, and Szekely
, J.
, 1992, “Fluid Flow, Heat Transfer and Solidification of Molten Metal Droplets Impinging on Substrate: Comparison of Numerical and Experimental Results
,” Metall. Trans. B
0360-2141, 23B
, pp. 701
–718
.8.
Pasandideh-Fard
, M.
, and Mostaghimi
, J.
, 1996, “On the Spreading and Solidification of Molten Particles in a Plasma Spray Process: Effect of the Thermal Contact Resistance
,” Plasma Chem. Plasma Process.
0272-4324, 16
, pp. 83
–98
.9.
Pasandideh-Fard
, M.
, Bhola
, R.
, Chandra
, S.
, and Mostaghimi
, J.
, 1998, “Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,” Int. J. Heat Mass Transfer
0017-9310, 41
, pp. 2929
–2945
.10.
Rangel
, R. H.
, and Bian
, X.
, 1998, “Undercooling and Contact Resistance in Stagnation—Flow Solidification on a Semi-Infinite Substrate
,” Int. J. Heat Mass Transfer
0017-9310, 41
, pp. 1645
–1653
.11.
Hong
, F. J.
, and Qiu
, H.-H.
, 2005, “Modeling of Remelting, Flow, and Resolidification of a Substrate in Microcasting
,” Numer. Heat Transfer, Part A
1040-7782, 48
, pp. 987
–1008
.12.
Attinger
, D.
, and Poulikakos
, D.
, 2001, “Melting and Resolidification of a Substrate Caused by Molten Microdroplet Impact
,” ASME J. Heat Transfer
0022-1481, 123
, pp. 1110
–1122
.13.
Sivakumar
, D.
, and Nishiyama
, H.
, 2004, “Numerical Analysis on the Impact Behavior of Molten Metal Droplets Using a Modified Splat-Quench Solidification Model
,” ASME J. Heat Transfer
0022-1481, 126
, pp. 1014
–1022
.14.
Mehdizadeh
, N. Z.
, Raessi
, M.
, Chandra
, S.
, and Mostaghimi
, J.
, 2004, “Effect of Substrate Temperature on Splashing of Molten Tin Droplets
,” ASME J. Heat Transfer
0022-1481, 126
, pp. 445
–452
.15.
Wang
, W.
, Hong
, F. J.
, and Qiu
, H.-H.
, 2006, “Prediction of Solder Bump Formation in Solder Jet Packaging Process
,” IEEE Trans. Compon. Packag. Technol.
1521-3331, 29
(3
), pp. 486
–493
.16.
Wang
, W.
, Hong
, F. J.
, and Qiu
, H.-H.
, 2006, “The Impact of Thermal Contact Resistance on the Spreading and Solidification of a Droplet on a Substrate
,” Heat Transfer Eng.
0145-7632, 27
(9
), pp. 68
–80
.17.
Ho
, K.
, and Pehlke
, R. D.
, 1985, “Metal-Mold Interfacial Heat Transfer
,” Metall. Trans. B
0360-2141, 16B
, pp. 585
–596
.18.
El-Mahallawy
, N. A.
, and Assar
, A. M.
, 1991, “Effect of Melt Superheat on Heat Transfer Coefficient for the Aluminium Solidifying Against Copper Chill
,” J. Mater. Sci.
0022-2461, 261
, pp. 729
–1733
.19.
Heichal
, Y.
, and Chandra
, S.
, 2005, “Predicting Thermal Contact Resistance Between Molten Metal Droplets and a Solid Surface
,” ASME J. Heat Transfer
0022-1481, 127
, pp. 1269
–1275
.20.
Liu
, W.
, Wang
, G. X.
, and Matthys
, E. F.
, 1992, “Determination of the Thermal Contact Coefficient for a Molten Metal Droplet Impinging on a Substrate
,” Transport Phenomena in Materials Processing and Manufacturing
, ASME
, New York
, Vol. HTD-196
, pp. 111
–118
.21.
Liu
, W.
, Wang
, G. X.
, and Matthys
, E. F.
, 1995, “Thermal Analysis and Measurement for a Molten Drop Impacting on a Substrate: Cooling, Solidification, and Heat Transfer Coefficient
,” Int. J. Heat Mass Transfer
0017-9310, 38
, pp. 1387
–1395
.22.
Wang
, G. X.
, and Matthys
, E. F.
, 1996, “Experimental Investigation of Interfacial Thermal Conductance for Molten Metal Solidification on a Substrate
,” ASME J. Heat Transfer
0022-1481, 118
, pp. 157
–163
.23.
Wang
, G. X.
, and Matthys
, E. F.
, 2002, “Experimental Determination of the Interfacial Heat Transfer During Cooling and Solidification of Molten Metal Droplet Impacting on a Metallic Substrate: Effect of Roughness and Superheat
,” Int. J. Heat Mass Transfer
0017-9310, 45
, pp. 4967
–4981
.24.
Loulou
, T.
, Artyukhin
, E. A.
, and Bardon
, J. P.
, 1999, “Estimation of Thermal Contact Resistance During the First Stages of Metal Solidification Process: I—Experiment Principle
,” Int. J. Heat Mass Transfer
0017-9310, 42
, pp. 2119
–2127
.25.
Loulou
, T.
, Artyukhin
, E. A.
, and Bardon
, J. P.
, 1999, “Estimation of Thermal Contact Resistance During the First Stages of Metal Solidification Process: II—Experimental Setup and Results
,” Int. J. Heat Mass Transfer
0017-9310, 42
, pp. 2129
–2142
.26.
Wang
, W.
, and Qiu
, H.-H.
, 2002, “Interfacial Thermal Conductance in Rapid Contact Solidification Process
,” Int. J. Heat Mass Transfer
0017-9310, 45
(10
), pp. 2043
–2053
.27.
Waldvogel
, J. M.
, and Poulikakos
, D.
, 1997, “Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,” Int. J. Heat Mass Transfer
0017-9310, 40
, pp. 295
–309
.28.
Boor
, C. de
, 1981, A Practical Guide to Splines
, 1st ed., Springer-Verlag
, Berlin.29.
Ozisik
, M. Necati
, 2000, Inverse Heat Transfer
, Taylor & Francis
, New York.30.
Qiu
, H.-H.
, Sommerfeld
, M.
, and Durst
, F.
, 1991, “High Resolution Data Processing for Phase Doppler Measurement in a Complex Two-Phase Flow
,” Meas. Sci. Technol.
0957-0233, 2
, pp. 455
–463
.31.
Parker
, R. L.
, Manning
, J. R.
, and Peterson
, N. C.
, 1985, “Application of Pulsed-Echo Ultrasonic to Locate the Solid/Liquid Interface During the Solidification and Melting of Steel and Other Metals
,” J. Appl. Phys.
0021-8979, 58
(11
), pp. 4150
–4164
.32.
Muojekwu
, C. A.
, Samarasekera
, I. V.
, and Brimacombe
, J. K.
, 1995, “Heat Transfer and Microstructure During the Early Stages of Metal Solidification
,” Metall. Mater. Trans. B
1073-5615, 26B
, pp. 361
–382
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.