A method based on a novel ultrasound technique and inverse heat transfer analysis was developed to study the transient thermal contact resistance (TCR) at the early stage of a rapid contact solidification process. This promising technique is nonintrusive and, therefore, provides no distortion to the contact surface as well as the heat transfer process. The effects of impact velocity and initial molten metal temperature on TCR were investigated in detail. An empirical equation that correlates the variable TCR with the initial and interfacial conditions was introduced utilizing the experimental data.

1.
Bennett
,
T.
, and
Poulikakos
,
D.
, 1994, “
Heat Transfer Aspects of Splat-Quench Solidification: Modeling and Experiment
,”
J. Mater. Sci.
0022-2461,
29
, pp.
2025
2039
.
2.
Hayes
,
D. J.
,
Wallace
,
D. B.
, and
Hayes
,
M. T.
, 1992, “
Picoliter Solder Droplet Dispensing
,”
Proceedings of the ISHM'92
, San Francisco, pp.
316
321
.
3.
Liu
,
Q.
, and
Orme
,
M.
, 2001, “
On Precision Droplet-Based Net-Form Manufacturing Technology
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
215
, pp.
1333
1355
.
4.
Amon
,
C. H.
,
Beuth
,
J. L.
,
Merz
,
R.
,
Prinz
,
F. B.
, and
Weiss
,
L. E.
, 1998, “
Shape Deposition Manufacturing With Microcasting: Processing, Thermal and Mechanical Issues
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
656
665
.
5.
Tong
,
A. Y.
, and
Holt
,
B. R.
, 1997, “
Numerical Study on the Solidification of a Liquid Metal Droplets Impacting Onto a Substrate
,”
Numer. Heat Transfer, Part A
1040-7782,
31
, pp.
797
817
.
6.
Waldvogel
,
J. M.
, and
Poulikakos
,
D.
, 1997, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
295
309
.
7.
Trapaga
,
G.
,
Matthys
,
E. F.
,
Valencia
,
J. J.
, and
Szekely
,
J.
, 1992, “
Fluid Flow, Heat Transfer and Solidification of Molten Metal Droplets Impinging on Substrate: Comparison of Numerical and Experimental Results
,”
Metall. Trans. B
0360-2141,
23B
, pp.
701
718
.
8.
Pasandideh-Fard
,
M.
, and
Mostaghimi
,
J.
, 1996, “
On the Spreading and Solidification of Molten Particles in a Plasma Spray Process: Effect of the Thermal Contact Resistance
,”
Plasma Chem. Plasma Process.
0272-4324,
16
, pp.
83
98
.
9.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 1998, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2929
2945
.
10.
Rangel
,
R. H.
, and
Bian
,
X.
, 1998, “
Undercooling and Contact Resistance in Stagnation—Flow Solidification on a Semi-Infinite Substrate
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1645
1653
.
11.
Hong
,
F. J.
, and
Qiu
,
H.-H.
, 2005, “
Modeling of Remelting, Flow, and Resolidification of a Substrate in Microcasting
,”
Numer. Heat Transfer, Part A
1040-7782,
48
, pp.
987
1008
.
12.
Attinger
,
D.
, and
Poulikakos
,
D.
, 2001, “
Melting and Resolidification of a Substrate Caused by Molten Microdroplet Impact
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1110
1122
.
13.
Sivakumar
,
D.
, and
Nishiyama
,
H.
, 2004, “
Numerical Analysis on the Impact Behavior of Molten Metal Droplets Using a Modified Splat-Quench Solidification Model
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
1014
1022
.
14.
Mehdizadeh
,
N. Z.
,
Raessi
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2004, “
Effect of Substrate Temperature on Splashing of Molten Tin Droplets
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
445
452
.
15.
Wang
,
W.
,
Hong
,
F. J.
, and
Qiu
,
H.-H.
, 2006, “
Prediction of Solder Bump Formation in Solder Jet Packaging Process
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
3
), pp.
486
493
.
16.
Wang
,
W.
,
Hong
,
F. J.
, and
Qiu
,
H.-H.
, 2006, “
The Impact of Thermal Contact Resistance on the Spreading and Solidification of a Droplet on a Substrate
,”
Heat Transfer Eng.
0145-7632,
27
(
9
), pp.
68
80
.
17.
Ho
,
K.
, and
Pehlke
,
R. D.
, 1985, “
Metal-Mold Interfacial Heat Transfer
,”
Metall. Trans. B
0360-2141,
16B
, pp.
585
596
.
18.
El-Mahallawy
,
N. A.
, and
Assar
,
A. M.
, 1991, “
Effect of Melt Superheat on Heat Transfer Coefficient for the Aluminium Solidifying Against Copper Chill
,”
J. Mater. Sci.
0022-2461,
261
, pp.
729
1733
.
19.
Heichal
,
Y.
, and
Chandra
,
S.
, 2005, “
Predicting Thermal Contact Resistance Between Molten Metal Droplets and a Solid Surface
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1269
1275
.
20.
Liu
,
W.
,
Wang
,
G. X.
, and
Matthys
,
E. F.
, 1992, “
Determination of the Thermal Contact Coefficient for a Molten Metal Droplet Impinging on a Substrate
,”
Transport Phenomena in Materials Processing and Manufacturing
,
ASME
,
New York
, Vol.
HTD-196
, pp.
111
118
.
21.
Liu
,
W.
,
Wang
,
G. X.
, and
Matthys
,
E. F.
, 1995, “
Thermal Analysis and Measurement for a Molten Drop Impacting on a Substrate: Cooling, Solidification, and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1387
1395
.
22.
Wang
,
G. X.
, and
Matthys
,
E. F.
, 1996, “
Experimental Investigation of Interfacial Thermal Conductance for Molten Metal Solidification on a Substrate
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
157
163
.
23.
Wang
,
G. X.
, and
Matthys
,
E. F.
, 2002, “
Experimental Determination of the Interfacial Heat Transfer During Cooling and Solidification of Molten Metal Droplet Impacting on a Metallic Substrate: Effect of Roughness and Superheat
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4967
4981
.
24.
Loulou
,
T.
,
Artyukhin
,
E. A.
, and
Bardon
,
J. P.
, 1999, “
Estimation of Thermal Contact Resistance During the First Stages of Metal Solidification Process: I—Experiment Principle
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2119
2127
.
25.
Loulou
,
T.
,
Artyukhin
,
E. A.
, and
Bardon
,
J. P.
, 1999, “
Estimation of Thermal Contact Resistance During the First Stages of Metal Solidification Process: II—Experimental Setup and Results
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2129
2142
.
26.
Wang
,
W.
, and
Qiu
,
H.-H.
, 2002, “
Interfacial Thermal Conductance in Rapid Contact Solidification Process
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
10
), pp.
2043
2053
.
27.
Waldvogel
,
J. M.
, and
Poulikakos
,
D.
, 1997, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
295
309
.
28.
Boor
,
C. de
, 1981,
A Practical Guide to Splines
, 1st ed.,
Springer-Verlag
, Berlin.
29.
Ozisik
,
M. Necati
, 2000,
Inverse Heat Transfer
,
Taylor & Francis
, New York.
30.
Qiu
,
H.-H.
,
Sommerfeld
,
M.
, and
Durst
,
F.
, 1991, “
High Resolution Data Processing for Phase Doppler Measurement in a Complex Two-Phase Flow
,”
Meas. Sci. Technol.
0957-0233,
2
, pp.
455
463
.
31.
Parker
,
R. L.
,
Manning
,
J. R.
, and
Peterson
,
N. C.
, 1985, “
Application of Pulsed-Echo Ultrasonic to Locate the Solid/Liquid Interface During the Solidification and Melting of Steel and Other Metals
,”
J. Appl. Phys.
0021-8979,
58
(
11
), pp.
4150
4164
.
32.
Muojekwu
,
C. A.
,
Samarasekera
,
I. V.
, and
Brimacombe
,
J. K.
, 1995, “
Heat Transfer and Microstructure During the Early Stages of Metal Solidification
,”
Metall. Mater. Trans. B
1073-5615,
26B
, pp.
361
382
.
You do not currently have access to this content.