The focus of this work is to study the effects of anisotropic thermal conductivity and thermal contact conductance on the overall temperature distribution inside a fuel cell. The gas-diffusion layers and membrane are expected to possess an anisotropic thermal conductivity, whereas a contact resistance is present between the current collectors and gas-diffusion layers. A two-dimensional single phase model is used to capture transport phenomena inside the cell. From the use of this model, it is predicted that the maximum temperatures inside the cell can be appreciably higher than the operating temperature of the cell. A high value of the in-plane thermal conductivity for the gas-diffusion layers was seen to be essential for achieving smaller temperature gradients. However, the maximum improvement in the heat transfer characteristics of the fuel cell brought about by increasing the in-plane thermal conductivity is limited by the presence of a finite thermal contact conductance at the diffusion layer/current collector interface. This was determined to be even more important for thin gas-diffusion layers. Anisotropic thermal conductivity of the membrane, however, did not have a significant impact on the temperature distribution. The thermal contact conductance at the diffusion layer/current collector interface strongly affected the temperature distribution inside the cell.

2.
Feng
,
W.
,
Wang
,
S.
,
Weidou
,
N.
, and
Chen
,
C.
, 2004, “
The Future of Hydrogen Infrastructure for Fuel Cell Vehicles in China and a Case of Application in Beijing
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
4
), pp.
355
367
.
3.
Ahluwalia
,
R. K.
,
Wang
,
X.
,
Rousseau
,
A.
, and
Kumar
,
R.
, 2004, “
Fuel Economy of Hydrogen Fuel Cell Vehicles
,”
J. Power Sources
0378-7753,
130
(
1-2
), pp.
192
201
.
4.
Choi
,
K. H.
,
Peck
,
D. H.
,
Kim
,
C. S.
,
Shin
,
D. R.
, and
Lee
,
T. H.
, 2000, “
Water Transport in Polymer Membranes for PEMFC
,”
J. Power Sources
0378-7753,
86
(
1-2
), pp.
197
201
.
5.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
6.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
7.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2490
.
8.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
140
(
5
), pp.
1218
1225
.
9.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
10.
Djilali
,
N.
, and
Lu
,
D.
, 2002, “
Influence of Heat Transfer on Gas and Water Transport in Fuel Cells
,”
Int. J. Therm. Sci.
1290-0729,
41
(
1
), pp.
29
40
.
11.
Bevers
,
D.
,
Wohr
,
M.
,
Yasuda
,
K.
, and
Oguro
,
K.
, 1997, “
Simulation of a Polymer Electrolyte Fuel Cell Electrode
,”
J. Appl. Electrochem.
0021-891X,
27
(
11
), pp.
1254
1264
.
12.
Wohr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
, 1998, “
Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell including Mass Transport Limitation
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
3
), pp.
213
218
.
13.
Rowe
,
A.
, and
Li
,
X.
, 2001, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
102
(
1-2
), pp.
82
96
.
14.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2000, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
(
2
), pp.
135
146
.
15.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
16.
Um
,
S.
, and
Wang
,
C. Y.
, 2003, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
125
(
1
), pp.
40
51
.
17.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a Fuel Cell
,”
J. Power Sources
0378-7753,
106
(
1-2
), pp.
284
294
.
18.
Zhou
,
T.
, and
Liu
,
H.
, 2001, “
A General Three-Dimensional Model for Proton Exchange Membrane Fuel Cell
,”
Int. J. Transp. Phenom.
1028-6578,
3
(
3
), pp.
177
198
.
19.
Ju
,
H.
,
Meng
,
H.
, and
Wang
,
C. Y.
, 2005, “
A Single-Phase, Non-Isothermal Model for PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
7
), pp.
1303
1315
.
20.
Sivertsen
,
B. R.
, and
Djilali
,
N.
, 2005, “
CFD-Based Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
141
(
1
), pp.
65
78
.
21.
Baschuk
,
J. J.
, and
Li
,
X.
, 2000, “
Modelling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
0378-7753,
86
(
1-2
), pp.
181
196
.
22.
Stockie
,
J. B.
, 2002, “
A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode
,” in
Proceedings of the IMECE’02, 2002 ASME International Mechanical Engineering Congress and Exposition
, November 17-22, 2002, New Orleans, Louisiana, USA, HTD-Vol.
7
, pp.
393
400
.
23.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of the PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
12
), pp.
A1589
A1598
.
24.
Wang
,
C. Y.
, and
Cheng
,
P.
, 1997, “
Multiphase Flow and Heat Transfer in Porous Media
,”
Adv. Heat Transfer
0065-2717,
30
, pp.
93
196
.
25.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
(
1
), pp.
40
50
.
26.
Wang
,
C. Y.
, and
Cheng
,
P.
, 1996, “
A Multiphase Mixture Model for Multiphase Multi-component Transport in Capillary Porous Media-I. Model Development
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
17
), pp.
3607
3618
.
27.
Hu
,
M.
,
Gu
,
A.
,
Wang
,
M.
,
Zhu
,
X.
, and
Yu
,
L.
, 2004, “
Three Dimensional, Two-Phase Flow Mathematical Model for PEM Fuel Cell: Part I. Model Development
,”
Energy Convers. Manage.
0196-8904,
45
(
11-12
), pp.
1861
1882
.
28.
Hu
,
M.
,
Zhu
,
X.
,
Wang
,
M.
,
Gu
,
A.
, and
Yu
,
L.
, 2004, “
Three Dimensional, Two-Phase Flow Mathematical Model for PEM Fuel Cell: Part II. Analysis and Discussion of the Internal Transport Mechanisms
,”
Energy Convers. Manage.
0196-8904,
45
(
11-12
), pp.
1883
1916
.
29.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651,
150
(
11
), pp.
A1510
A1517
.
30.
Sun
,
H.
,
Liu
,
H.
, and
Guo
,
L.
, 2005, “
PEM Fuel Cell Performance and its Two-Phase Mass Transport
,”
J. Power Sources
0378-7753,
143
(
1-2
), pp.
125
135
.
31.
Birgersson
,
E.
,
Noponen
,
M.
, and
Vynnycky
,
M.
, 2005, “
Analysis of a Two-Phase Non-Isothermal Model for a PEMFC
,”
J. Electrochem. Soc.
0013-4651,
152
(
5
), pp.
A1021
A1034
.
32.
Shimpalee
,
S.
,
Greenway
,
S.
,
Spuckler
,
D.
, and
Van Zee
,
J. W.
, 2004, “
Predicting Water and Current Distributions in a Commercial-Size PEMFC
,”
J. Power Sources
0378-7753,
135
(
1-2
), pp.
79
87
.
33.
Baschuk
,
J. J.
, and
Li
,
X.
, 2004, “
A General Formulation for a Mathematical PEM Fuel Cell Model
,”
J. Power Sources
0378-7753,
142
(
1-2
), pp.
134
153
.
34.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
24
), pp.
4595
4611
.
35.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Microporous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
(
25
), pp.
4359
4369
.
36.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2005, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
2
), pp.
A380
A390
.
37.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2003, “
A Numerical Investigation of Gas Flow and Heat Transfer in Proton Exchange Membrane Fuel Cells
,”
Numer. Heat Transfer, Part A
1040-7782,
44
(
3
), pp.
255
280
.
38.
Musser
,
J.
, and
Wang
,
C. Y.
, 2000, “
Heat Transfer in a Fuel Cell Engine
,” in
Proceedings of the NHTC’00, 34th National Heat Transfer Conference
, Pittsburgh, Pennsylvania, August 20–22, NHTC-Vol.
1
, pp.
291
297
.
39.
Mawardi
,
A.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2005, “
Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,”
J. Fuel Cell Sci. Technol.
1550-624X,
2
(
2
), pp.
121
135
.
40.
Kurabayashi
,
K.
, 2001, “
Anisotropic Thermal Properties of Solid Polymers
,”
Int. J. Thermophys.
0195-928X,
12
(
1
), pp.
277
288
.
41.
Hansen
,
D.
, and
Bernier
,
G. A.
, 1972, “
Thermal Conductivity of Polyethylene: The Effects of Crystal Size, Density and Orientation on the Thermal Conductivity
,”
Polym. Eng. Sci.
0032-3888,
12
(
3
), pp.
204
208
.
42.
Morelli
,
D. T.
,
Heremans
,
J.
,
Sakomoto
,
M.
, and
Uher
,
C.
, 1986, “
Anisotropic Heat Conduction in Diacetylenes
,”
Phys. Rev. Lett.
0031-9007,
57
(
7
), pp.
869
872
.
43.
Kurabayashi
,
K.
,
Asheghi
,
M.
,
Touzelbaev
,
M.
, and
Goodson
,
K. E.
, 1999, “
Measurement of the Thermal Conductivity in Polyimide Films
,”
J. Microelectromech. Syst.
1057-7157,
8
(
2
), pp.
180
191
.
44.
Mauritz
,
K. A.
, and
Moore
,
R. B.
, 2004, “
State of Understanding of Nafion
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
(
10
), pp.
4535
4585
.
45.
Gardner
,
C. L.
, and
Anantaraman
,
A. V.
, 1998, “
Studies on Ion-Exchange Membranes. II. Measurement of the Anisotropic Conductance of Nafion
,”
J. Electroanal. Chem.
0022-0728,
449
(
1-2
), pp.
209
214
.
46.
Newman
,
J. S.
, 1973,
Electrochemical Systems
,
Prentice-Hall
, Englewood Cliffs, Chap. 1.
47.
Parthasarathy
,
A.
,
Srinivasan
,
S.
, and
Appleby
,
J. A.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at Platinum/Nafion Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2530
2537
.
48.
Mirmira
,
S. R.
,
Marotta
,
E. E.
, and
Fletcher
,
L. S.
, 1998, “
Thermal Contact Conductance of Elastomeric Gaskets
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
454
456
.
49.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
, 1996, “
Thermal Contact Conductance of Selected Polymeric Materials
,”
J. Thermophys. Heat Transfer
0887-8722,
10
(
2
), pp.
334
342
.
50.
Fuller
,
J. J.
, and
Marotta
,
E. E.
, 2001, “
Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
2
), pp.
228
238
.
51.
Hollinger
,
A.
, 2006, “
Contact Resistance Measurements of Gas-Diffusion Layers and Membrane for Fuel Cell Applications
,” Senior Honors thesis, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA.
52.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2004, “
Measurement and Prediction of Electrical Contact Resistance Between Gas-Diffusion layers and Bipolar Plate for Applications to PEM Fuel Cells
,”
J. Fuel Cell Sci. Technol.
1550-624X,
1
(
1
), pp.
2
9
.
53.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, Washington, D.C.
54.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
, 2003, “
A Parametric Study of Fuel Cell Performances
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
11
), pp.
1263
1272
.
55.
Saxena
,
V.
, and
Thynell
,
S. T.
, 2007, “
Thermal Conductivity Measurements of Polymer Electrolyte Membrane and Gas-diffusion Layers in PEM Fuel Cell Using Pulsed Photothermal Radiometry
” (in preparation).
You do not currently have access to this content.