Two phase heat transfer devices based on the miniature version of loop heat pipe (LHP) can provide very promising cooling solutions for the compact electronic devices due to their high heat flux management capability and long distance heat transfer with minimal temperature losses. This paper discusses the effect of the wick properties on the heat transfer characteristics of the miniature LHP. The miniature model of the LHP with disk-shaped evaporator, 10 mm thick and 30 mm disk diameter, was designed using copper containment vessel and water as the working fluid, which is the most acceptable combination in electronic cooling applications. In the investigation, wick structures with different physical properties including thermal conductivity, pore radius, porosity, and permeability and with different structural topology including monoporous or biporous evaporating face were used. It was experimentally observed that copper wicks are able to provide superior thermal performance than nickel wicks, particularly for low to moderate heat loads due to their low heat conducting resistance. With monoporous copper wick, maximum evaporator heat transfer coefficient (hev) of 26,270W/m2K and evaporator thermal resistance (Rev) of 0.060.10°C/W were achieved. For monoporous nickel wick, the corresponding values were 20,700W/m2K for hev and 0.080.21°C/W for Rev. Capillary structure with smaller pore size, high porosity, and high permeability showed better heat transfer characteristics due to sufficient capillary pumping capability, low heat leaks from evaporator to compensation chamber and larger surface area to volume ratio for heat exchange. In addition to this, biporous copper wick structure showed much higher heat transfer coefficient of 83,787W/m2K than monoporous copper wick due to improved evaporative heat transfer at wick wall interface and separated liquid and vapor flow pores. The present work was able to classify the importance of the wick properties in the improvement of the thermal characteristics for miniature loop heat pipes.

1.
Dunn
,
P. D.
, and
Reay
,
D. A.
, 1994,
Heat Pipes
,
Pergamon
,
London
.
2.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
London
.
3.
Maydanik
,
Y. F.
, and
Fershtater
,
Y. G.
, 1997, “
Theoretical Basis and Classification of Loop Heat Pipes and Capillary Pumped Loops
,”
Proceedings of the Tenth International Heat Pipe Conference
, Stuttgart, Germany, Sept. 21–25.
4.
Ku
,
J.
, 1999, “
Operating Characteristics of Loop Heat Pipes
,”
Proceedings of the 29th International Conference on Environmental Systems
, Denver, CO, Jul. 12–15, SAE Paper No. 1999-01-2007.
5.
Maydanik
,
Y. F.
, 2005, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
1359-4311,
25
(
5–6
), pp.
635
657
.
6.
Swanson
,
T. D.
, 2004, “
Thermal Control Technologies for Complex Spacecraft
,”
Proceedings of the 13th International Heat Pipe Conference
, Shanghai, China, Sept. 21–25, pp.
1
11
.
7.
Maydanik
,
Y. F.
, 2004, “
Miniature Loop Heat Pipes
,”
Proceedings of the 13th International Heat Pipe Conference
, Shanghai, China, Sept. 21–25, pp.
24
37
.
8.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
, 2005, “
Miniature Loop Heat Pipes—A Promising Means for Cooling Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
290
296
.
9.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
,
Mochizuki
,
M.
, and
Riehl
,
R. R.
, 2007, “
Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
42
49
. 1521-3331
10.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
, and
Mochizuki
,
M.
, 2006, “
Thermal Characteristics of the Miniature Loop Heat Pipe With Water as the Working Fluid
,”
Proceedings of the Eighth International Heat Pipe Symposium
, Kumamoto, Japan, Sept. 24–27, pp.
191
196
.
11.
Hoang
,
T. T.
,
O’Connell
,
T. A.
,
Ku
,
J.
,
Butler
,
C. D.
, and
Swanson
,
T. D.
, 2003, “
Miniature Loop Heat Pipes for Electronic Cooling
,” ASME Paper No. 35245.
12.
Bienert
,
W. B.
,
Krotiuk
,
W. J.
, and
Nikitkin
,
M. N.
, 1999, “
Thermal Control With Low Power Miniature Loop Heat Pipes
,”
Proceedings of the 29th International Conference on Environmental Systems
, Denver, CO, Jul. 12–15, SAE Paper No. 1999-01-2008.
13.
Kiseev
,
V. M.
,
Nepomnyashy
,
A. S.
,
Gruzdova
,
N. L.
, and
Kim
,
K. S.
, 2003, “
Miniature Loop Heat Pipes for CPU Cooling
,”
Proceedings of the Seventh International Heat Pipe Symposium
, Jeju, Korea.
14.
Singh
,
R.
, 2006, “
Thermal Control of High-Powered Desktop and Laptop Microprocessors Using Two-Phase and Single-Phase Loop Cooling Systems
,” Ph.D. thesis, RMIT University, Melbourne, Australia.
15.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
,
Mochizuki
,
M.
,
Nguyen
,
T.
, and
Reihl
,
R. R.
, 2007, “
Miniature Loop Heat Pipes With Different Evaporator Configurations for Cooling Compact Electronics
,”
Proceedings of the 14th International Heat Pipe Conference
, April 22–27, Florianopolis, Brazil, pp.
176
181
.
16.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
, and
Mochizuki
,
M.
, 2007, “
Novel Design of a Miniature Loop Heat Pipe Evaporator for Electronic Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
(
10
), pp.
1445
1452
.
17.
Boo
,
J. H.
, and
Chung
,
W. B.
, 2005, “
Thermal Performance of a Loop Heat Pipe Having Propylene Wick in a Flat Evaporator
,”
Proceedings of the ASME Heat Transfer Conference
, San Francisco, CA, Jul. 17–22.
18.
Kobayashi
,
T.
,
Ogushi
,
T.
,
Haga
,
S.
,
Ozaki
,
E.
, and
Fujii
,
M.
, 2003, “
Heat Transfer Performance of a Flexible Looped Heat Pipe Using R134a as a Working Fluid: Proposal for a Method to Predict the Maximum Heat Transfer Rate of FLHP
,”
Heat Transfer Asian Res.
1099-2871,
32
(
4
), pp.
306
318
.
19.
Riehl
,
R. R.
, and
Dutra
,
T.
, 2005, “
Development of an Experimental Loop Heat Pipe for Application in Future Space Missions
,”
Appl. Therm. Eng.
,
25
, pp.
101
112
. 1359-4311
20.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
, and
Mochizuki
,
M.
, 2004, “
Experimental Determination of the Physical Properties of a Porous Plastic Wick Useful for Capillary Pumped Loop Applications
,”
Proceedings of the 13th International Heat Pipe Conference
, Shanghai, China, Sept. 21–25.
21.
Reimbrecht
,
E. G.
,
Fredel
,
M. C.
,
Bazoo
,
E.
, and
Pereira
,
F. M.
, 1999, “
Manufacturing and Microstructural Characterization of Sintered Nickel Wicks for Capillary Pumps
,”
Mater. Res.
,
2
(
3
), pp.
225
229
. 1516-1439
22.
Li
,
Q.
, and
Xuan
,
Y.
, 2003, “
Development of High Performance Sintered Wicks for CPLs
,”
Proceedings of the Seventh International Heat Pipe Symposium
, Jeju, South Korea, Oct.
23.
Maydanik
,
Y. F.
,
Fershtater
,
Y. G.
, and
Pastukhov
,
V. G.
, 1992, “
Development and Investigation of Two Phase Loops With High Pressure Capillary Pumps for Space Applications
,”
Proceedings of the Eighth International Heat Pipe Conference
, Beijing, China.
24.
Pastukhov
,
V. G.
,
Maydanik
,
Y. F.
, and
Chernyshova
,
M. A.
, 1999, “
Development and Investigation of Miniature Loop Heat Pipes
,”
Proceedings of the 29th International Conference on Environmental Systems
, Denver, CO, Paper No. 1999-01-1983.
25.
Baumann
,
J
, and
Rawal
,
S.
, 2001, “
Viability of Loop Heat Pipes for Space Solar Power Applications
, American Institute of Aeronautics and Astronautics Paper No. 2001-3078.
26.
Khrustalev
,
D.
, and
Semenov
,
S.
, 2003, “
Advances in Low Temperature Cryogenic and Miniature Loop Heat Pipes
,”
Proceedings of the 14th Spacecraft Thermal Control Workshop
, El Segundo.
27.
Wang
,
J.
, and
Catton
,
I.
, 2004, “
Vaporization Heat Transfer in Biporous Wicks of Heat Pipe Evaporators
,”
Proceedings of the International Heat Pipe Conference
, Shanghai, China, Sept. 21–25.
28.
Chernysheva
,
M. A.
,
Maydanik
,
Y. F.
, and
Vershinin
,
S. V.
, 1999, “
Heat Exchange in the Evaporator of a Loop Heat Pipe With a Biporous Capillary Structure
,”
Proceedings of the 11th International Heat Pipe Conference
, Tokyo, Japan.
29.
Yeh
,
C. C.
,
Liu
,
B. H.
, and
Chen
,
Y. M.
, 2008, “
A Study of Loop Heat Pipe With Biporous Wicks
,”
Heat Mass Transfer
0947-7411,
44
, pp.
1537
1547
.
30.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
, and
Fershtater
,
Y. G.
, 1997, “
Heat Transfer Enhancement in a Loop Heat Pipe Evaporator
,”
Proceedings of the Tenth International Heat Pipe Conference
, Stuttgart, Germany, Sept. 21–25.
31.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
, 2008, “
Operational Characteristics of a Miniature Loop Heat Pipe With Flat Evaporator
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1413
1562
. 1290-0729
32.
Scheidegger
,
A. E.
, 1974,
The Physics of Flow Through Porous Media
,
University of Toronto
,
Toronto
.
33.
Alexander
,
E. G.
, 1972, “
Structure-Property Relationships in Heat Pipe Wicking Materials
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
34.
Cengel
,
Y. A.
, and
Turner
,
R. H.
, 2001,
Fundamentals of Thermal-Fluid Sciences
,
McGraw-Hill
,
New York
, Chaps. 18 and 19.
35.
Maydanik
,
Y. F.
,
Solodovnik
,
N.
, and
Fershtater
,
Y.
, 1995, “
Investigation of Dynamic and Stationary Characteristics of a Loop Heat Pipe
,”
Proceedings of the Ninth International Heat Pipe Conference
, Albuquerque, NM, pp.
1002
1006
.
You do not currently have access to this content.