Shell-and-tube heat exchangers (STHXs) have been widely used in many industrial processes. In the present paper, flow and heat transfer characteristics of the shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) and segmental baffles (SG-STHX) were experimentally studied. In the experiments, these STHXs shared the same tube bundle, shell geometrical structures, different baffle arrangement, and number of heat exchange tubes. Experimental results suggested that the CH-STHX can increase the heat transfer rate by 7–12% than the SG-STHX for the same mass flow rate although its effective heat transfer area had 4% decrease. The heat transfer coefficient and pressure drop of the CH-STHX also had 43–53% and 64–72% increase than those of the SG-STHX, respectively. Based on second-law thermodynamic comparisons in which the quality of energy are evaluated by the entropy generation number and exergy losses, the CH-STHX decreased the entropy generation number and exergy losses by 30% and 68% on average than the SG-STHX for the same Reynolds number. The analysis from nondimensional correlations for Nusselt number and friction factor also revealed that if the maximal velocity ratio R>2.4, the heat transfer coefficient of CH-STHX was higher than that of SG-STHX, and the corresponding friction factor ratio kept at constant fo,CH/fo,SG=0.28.

1.
Gulyani
,
B. B.
, 2000, “
Estimating Number of Shells in Shell and Tube Heat Exchangers: A New Approach Based on Temperature Cross
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
566
571
.
2.
Master
,
B. I.
,
Chunangad
,
K. S.
,
Boxma
,
A. J.
,
Kral
,
D.
, and
Stehlik
,
P.
, 2006, “
Most Frequently Used Heat Exchangers From Pioneering Research to Worldwide Applications
,”
Heat Transfer Eng.
0145-7632,
27
(
6
), pp.
4
11
.
3.
Nasiruddin
,
K.
, and
Siddiqui
,
M. H.
, 2007, “
Heat Transfer Augmentation in a Heat Exchanger Using a Baffle
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
318
328
.
4.
Stehlík
,
P.
, and
Wadekar
,
V. V.
, 2002, “
Different Strategies to Improve Industrial Heat Exchanger
,”
Heat Transfer Eng.
0145-7632,
23
(
6
), pp.
36
48
.
5.
Reppich
,
R. M.
, and
Zagermann
,
S.
, 1995, “
A New Design Method for Segmentally Baffled Heat Exchangers
,”
Comput. Chem. Eng.
0098-1354,
19
, pp.
137
142
.
6.
Anthony
,
J.
, 1998, “
Tube and Shell Heat Exchanger With Baffle
,” U.S. Patent No. US5,832,991.
7.
Gentry
,
C. C.
, 1998, “
Rod Baffle Heat Exchanger
,”
Appl. Therm. Eng.
1359-4311,
18
(
6
), pp.
VII
VIII
.
8.
Li
,
H. D.
, and
Kottke
,
V.
, 1998, “
Effect of Leakage on Pressure Drop and Local Heat Transfer in Shell-and-Tube Heat Exchangers for Staggered Tube Arrangement
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
2
), pp.
425
433
.
9.
Gaddis
,
E. S.
, and
Gnielinski
,
V.
, 1997, “
Pressure Drop on the Shell Side of Shell-and-Tube Heat Exchangers With Segmental Baffles
,”
Chem. Eng. Prog.
0360-7275,
36
, pp.
149
159
.
10.
ABB Lummus Global, Inc.
, 2004, “
Heat Exchanger
,” U.S. Patent No. US 6,827,138 Bl.
11.
Lutcha
,
J.
, and
Nemcansky
,
J.
, 1990, “
Performance Improvement of Tubular Heat Exchangers by Helical Baffles
,”
Chem. Eng. Res. Des.
0263-8762,
68
, pp.
263
270
.
12.
Stehlík
,
P.
,
Nemcansky
,
J.
,
Kral
,
D.
, and
Swanson
,
L. W.
, 1994, “
Comparison of Correction Factors for Shell-and-Tube Heat Exchangers With Segmental or Helical Baffles
,”
Heat Transfer Eng.
0145-7632,
15
(
1
), pp.
55
65
.
13.
Kral
,
D.
,
Stehlik
,
P.
,
Van Der Ploeg
,
H. J.
, and
Master
,
B. I.
, 1996, “
Helical Baffles Shell-and-Tube Heat Exchangers, Part 1: Experimental Verification
,”
Heat Transfer Eng.
0145-7632,
17
(
1
), pp.
93
101
.
14.
Wang
,
Q. W.
,
Luo
,
L. Q.
,
Zeng
,
M.
,
Wang
,
L.
,
Tao
,
W. Q.
, and
Huang
,
Y. P.
, 2005, “
Shell-side Heat Transfer and Pressure Drop of Shell-and-Tube Heat Exchangers With Overlap Helical Baffles
,”
J. Chem. Ind. Eng.
,
56
(
4
), pp.
598
601
.
15.
Zhang
,
J. F.
,
Li
,
B.
,
Huang
,
W. J.
,
Lei
,
Y. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Experimental Performance Comparison of Sell-Side Heat Transfer for Shell-and-Tube Heat Exchangers With Middle-Overlapped Helical Baffles and Segmental Baffles
,”
Chem. Eng. Sci.
0009-2509,
64
(
8
), pp.
1643
1653
.
16.
Zhang
,
D. J.
, and
Wang
,
Q. W.
, 2005, “
Numerical Simulation of Flow Performance in Shell Side of Shell-and-Tube Heat Exchanger With Discontinuous Helical Baffles
,”
Proceedings of the Second International Symposium on Thermal Science and Technology
, Beijing, pp.
181
185
.
17.
Wang
,
Q. W.
,
Chen
,
Q. Y.
,
Peng
,
B. T.
, and
Zeng
,
M.
,
Luo
,
L. Q.
, and
Wu
,
Y. N.
, 2005, “
Continuous Helical Baffled Shell-and-Tube Heat Exchanger
,” China Patent No. CN: ZL200510043033.5.
18.
Wang
,
Q. W.
,
Chen
,
G. D.
,
Chen
,
Q. Y.
, and
Zeng
,
M.
, 2008, “
Recent Patents in Shell-and-Tube Heat Exchangers With Helical Baffles
,”
Recent Patents on Mechanical Engineering
1874-477X,
1
, pp.
88
95
.
19.
Wang
,
Q. W.
,
Chen
,
G. D.
,
Chen
,
Q. Y.
, and
Zeng
,
M.
, 2010, “
Review of Improvements on Shell-and-Tube Heat Exchangers With Helical Baffles
,”
Heat Transfer Eng.
0145-7632,
31
(
10
), pp.
836
853
.
20.
Peng
,
B. T.
,
Wang
,
Q. W.
,
Zhang
,
C.
,
Xie
,
G. N.
,
Luo
,
L. Q.
,
Chen
,
Q. Y.
, and
Zeng
,
M.
, 2007, “
An Experimental Study of Shell-and-Tube Heat Exchangers With Continuous Helical Baffles
,”
ASME J. Heat Transfer
0022-1481,
129
(
10
), pp.
1425
1431
.
21.
Wang
,
Q. W.
,
Xie
,
G. N.
,
Peng
,
B. T.
, and
Zeng
,
M.
, 2007, “
Experimental Study and Genetic-Algorithm-Based Correlation on Shell-Side Heat Transfer and Flow Performance of Three Different Types of Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
129
(
9
), pp.
1277
11285
.
22.
Wang
,
Q. W.
,
Chen
,
Q. Y.
, and
Chen
,
G. D.
, 2009, “
Numerical Investigation on Combined Multiple Shell-Pass Shell-and-Tube Heat Exchangers With Continuous Helical Baffles
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1214
1222
.
23.
Wang
,
Q. W.
,
Chen
,
G. D.
,
Chen
,
Q. Y.
,
Zhang
,
D. H.
, and
Zeng
,
M.
, 2008, “
Numerical Studies of a Novel Combined Multiple Shell-Pass Shell-and-Tube Heat Exchangers With Helical Baffles
,”
ASME
Paper No. HT2008-56217.
24.
Chen
,
G. D.
,
Zeng
,
M.
, and
Wang
,
Q. W.
, 2008, “
Numerical Studies of Combined Multiple Shell-Pass Shell-and-Tube Heat Exchangers With Helical Baffles
,”
Seventh International Symposium on Heat Transfer
, Beijing, China.
25.
Chen
,
G. D.
,
Wang
,
Q. W.
, and
Zeng
,
M.
, 2009, “
Numerical Studies on a Novel Shell-and-Tube Heat Exchanger With Combined Helical Baffles
,”
Seventh International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: From Microscale Phenomena to Industrial Applications
, Heredia, Costa Rica, Paper No. CHE 2009-17.
26.
Chen
,
G. D.
,
Wang
,
Q. W.
, and
Peng
,
B. T.
, 2009, “
Experimental and Numerical Studies of Shell-and-Tube Heat Exchangers With Helical Baffles
,”
ASME
Paper No. HT2009-88174.
27.
Bejan
,
A.
, 1977, “
The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchanger for Gas-Gas Application
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
374
380
.
28.
Bejan
,
A.
, 1979, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
374
380
.
29.
Prasad
,
R. C.
, and
Shen
,
J.
, 1993, “
Performance Evaluation of Convective Heat Transfer Enhancement Devices Using Exergy Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
4193
4197
.
30.
Sahin
,
A.
, 2000, “
Entropy Generation in Turbulent Liquid Flow Through a Smooth Duct With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1469
1478
.
31.
Sarangi
,
S. K.
, and
Chowdhury
,
K.
, 1982, “
On the Generation of Entropy in a Counterflow Heat Exchanger
,”
Cryogenics
0011-2275,
22
(
2
), pp.
63
65
.
32.
Hesselgreaves
,
J. E.
, 2000, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
22
), pp.
4189
4204
.
33.
Yilmaz
,
M.
,
Sara
,
O. N.
, and
Karsli
,
S.
, 2001, “
Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
1
(
4
), pp.
278
294
.
34.
Naphon
,
P.
, 2006, “
Second Law Analysis on the Heat Transfer of the Horizontal Concentric Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
(
8
), pp.
1029
1041
.
35.
He
,
Y. L.
,
Lei
,
Y. G.
,
Zhang
,
J. F.
,
Chu
,
P.
, and
Li
,
R.
, 2009, “
Second-Law Based Thermodynamic Analysis of a Novel Heat Exchanger
,”
Chem. Eng. Technol.
0930-7516,
32
(
1
), pp.
86
92
.
36.
Bowman
,
R. A.
,
Mueller
,
A. C.
, and
Nagle
,
W. M.
, 1940, “
Mean Temperature Difference in Design
,”
Trans. ASME
0097-6822,
26
, pp.
283
294
.
37.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flows
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
38.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
39.
Bell
,
K. J.
, 1981, “
Delaware Method for Shell Side Design
,”
Heat Exchangers-Thermal-Hydraulic Fundamentals and Design
,
S.
Kakac
,
A. E.
Bergles
, and
E.
Mayinger
, eds.,
Taylor & Francis
,
Washington, DC
.
40.
Bell
,
K. J.
, 1986, “
Delaware Method for Shell Side Design
,”
Heat Exchanger Sourcebook
,
G. W.
Pallen
, ed.,
Hemisphere
,
New York
.
41.
Bell
,
K. J.
, 1988, “
Delaware Method for Shell-Side Design
,”
Heat Transfer Equipment Design
,
R. K.
Shah
,
E. C.
Sunarao
, and
R. A.
Mashelkar
, eds.,
Taylor & Francis
,
New York
.
42.
Cengel
,
Y. A.
, 1998,
Heat Transfer, A Practical Approach
,
WCB McGraw-Hill
,
Boston
.
43.
Churchill
,
S. W.
, and
Bernstein
,
M.
, 1977, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Cross Flow
,”
ASME J. Heat Transfer
0022-1481,
99
(
1
), pp.
300
306
.
You do not currently have access to this content.