This paper presents a comprehensive computational work on the hydrodynamic, thermal, and mass transfer characteristics of a circular cylinder, subjected to confined flow at the cylinder Reynolds number of Red=40. As the two-dimensional, steady and incompressible momentum and energy equations are solved using ANSYS-CFX (version 11.0), the moisture distributions are computed by a new alternating direction implicit method based software. The significant results, highlighting the influence of blockage (β=0.2000.800) on the flow and heat transfer mechanism and clarifying the combined roles of β and moisture diffusivity (D=1×1081×105m2/s) on the mass transfer behavior, are obtained for practical applications. It is shown that the blockage augments the friction coefficients (Cf) and Nusselt numbers (Nu) on the complete cylinder surface, where the average Nu are evaluated as Nuave=3.66, 4.05, 4.97, and 6.51 for β=0.200, 0.333, 0.571, and 0.800. Moreover, the blockage shifts separation (θs) and maximum Cf locations (θCfmax) downstream to the positions of θs=54.10, 50.20, 41.98, and 37.30 deg and θCfmax=51.5, 53.4, 74.9, and 85.4 deg. The highest blockage of β=0.800 encourages the downstream backward velocity values, which as a consequence disturbs the boundary layer and weakens the fluid-solid contact. The center and average moisture contents differ significantly at the beginning of drying process, but in the last 5% of the drying period they vary only by 1.6%. Additionally, higher blockage augments mass transfer coefficients (hm) on the overall cylinder surface; however, the growing rate of back face mass transfer coefficients (hmbf) is dominant to that of the front face values (hmff), with the interpreting ratios of h¯mbf/h¯m=0.50 and 0.57 and h¯mff/h¯m=1.50 and 1.43 for β=0.200 and 0.800.

1.
Bhattacharyya
,
S.
,
Dhinakaran
,
S.
, and
Khalili
,
A.
, 2006, “
Fluid Motion Around and Through a Porous Cylinder
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
4451
4461
.
2.
Job
,
N.
,
Sabatier
,
F.
,
Pirard
,
J. P.
,
Crine
,
M.
, and
Leonard
,
A.
, 2006, “
Towards the Production of Carbon Xerogel Monoliths by Optimizing Convective Drying Conditions
,”
Carbon
0008-6223,
44
, pp.
2534
2542
.
3.
Akpinar
,
E. K.
, and
Dincer
,
I.
, 2005, “
Moisture Transfer Models for Slabs Drying
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
80
93
.
4.
Griffith
,
M. D.
,
Thompson
,
M. C.
,
Leweke
,
T.
,
Hourigan
,
K.
, and
Anderson
,
W. P.
, 2007, “
Wake Behaviour and Instability of Flow Through a Partially Blocked Channel
,”
J. Fluid Mech.
0022-1120,
582
, pp.
319
340
.
5.
Chakraborty
,
J.
,
Verma
,
N.
, and
Chhabra
,
R. P.
, 2004, “
Wall Effects in Flow Past a Circular Cylinder in a Plane Channel: A Numerical Study
,”
Chem. Eng. Process.
0255-2701,
43
, pp.
1529
1537
.
6.
Sahin
,
M.
, and
Owens
,
R. G.
, 2004, “
A Numerical Investigations of Wall Effects Up to High Blockage Ratios on Two-Dimensional Flow Past a Confined Circular Cylinder
,”
Phys. Fluids
1070-6631,
16
, pp.
1305
1320
.
7.
Rehimi
,
F.
,
Aloui
,
F.
,
Nasrallah
,
S. B.
,
Doubliez
,
L.
, and
Legrand
,
J.
, 2008, “
Experimental Investigation of a Confined Flow Downstream of a Circular Cylinder Centred Between Two Parallel Walls
,”
J. Fluids Struct.
0889-9746,
24
, pp.
855
882
.
8.
Sen
,
S.
,
Mittal
,
S.
, and
Biswas
,
G.
, 2009, “
Steady Separated Flow Past a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
620
, pp.
89
119
.
9.
Breuer
,
M.
,
Bernsdorf
,
J.
,
Zeiser
,
T.
, and
Durst
,
F.
, 2000, “
Accurate Computations of the Laminar Flow Past a Square Cylinder Based on Two Different Methods: Lattice-Boltzmann and Finite-Volume
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
186
196
.
10.
Camarri
,
S.
, and
Giannetti
,
F.
, 2007, “
On the Inversion of the von Karman Street in the Wake of a Confined Square Cylinder
,”
J. Fluid Mech.
0022-1120,
574
, pp.
169
178
.
11.
Chang
,
B. H.
, and
Mills
,
A. F.
, 2004, “
Effect of Aspect Ratio on Forced Convection Heat Transfer From Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1289
1296
.
12.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2005, “
Fluid Flow Around and Heat Transfer From an Infinite Circular Cylinder
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
785
790
.
13.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2006, “
Analytical Study of Heat Transfer From Circular Cylinder in Liquid Metals
,”
Heat Mass Transfer
0947-7411,
42
, pp.
1017
1023
.
14.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2007, “
Effect of Blockage on Heat Transfer From a Cylinder to Power Law Liquids
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
4729
4741
.
15.
Montelpare
,
S.
, and
Ricci
,
R.
, 2004, “
An Experimental Method for Evaluating the Heat Transfer Coefficient of Liquid-Cooled Short Pin Fins Using Infrared Thermography
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
815
824
.
16.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Tong
,
J. C. K.
, 2004, “
Archival Correlations for Average Heat Transfer Coefficients for Non-Circular and Circular Cylinders and for Spheres in Cross-Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5285
5296
.
17.
Buyruk
,
E.
,
Johnson
,
M. W.
, and
Owen
,
I.
, 1998, “
Numerical and Experimental Study of Flow and Heat Transfer around a Tube in Cross-Flow at Low Reynolds Number
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
223
232
.
18.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
Fluid Flow and Heat Transfer from a Cylinder between Parallel Planes
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
395
403
.
19.
Sharma
,
A.
, and
Eswaran
,
V.
, 2004, “
Effect of Channel Confinement on the Two-Dimensional Laminar Flow and Heat Transfer Across a Square Cylinder
,”
Numer. Heat Transfer, Part A
1040-7782,
47
, pp.
79
107
.
20.
Dhiman
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
, 2005, “
Flow and Heat Transfer across a Confined Square Cylinder in the Steady Flow Regime: Effect of Peclet Number
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4598
4614
.
21.
Queiroz
,
M. R.
, and
Nebra
,
S. A.
, 2001, “
Theoretical and Experimental Analysis of the Drying Kinetics of Bananas
,”
J. Food. Eng.
0260-8774,
47
, pp.
127
132
.
22.
Dincer
,
I.
,
Hussain
,
M. M.
,
Sahin
,
A. Z.
, and
Yilbas
,
B. S.
, 2002, “
Development of a New Moisture Transfer (Bi–Re) Correlation for Food Drying Applications
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1749
1755
.
23.
Akpinar
,
E. K.
, and
Dincer
,
I.
, 2005, “
Application of Moisture Transfer Models to Solids Drying
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
, pp.
235
244
.
24.
Kaya
,
A.
,
Aydin
,
O.
, and
Dincer
,
I.
, 2007, “
Numerical Modeling of Forced Convection Drying of Cylindrical Moist Objects
,”
Numer. Heat Transfer, Part A
1040-7782,
51
, pp.
843
854
.
25.
Sahin
,
A. Z.
, and
Dincer
,
I.
, 2002, “
Graphical Determination of Drying Process and Moisture Transfer Parameters for Solids Drying
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3267
3273
.
26.
Feng
,
H.
,
Tang
,
J.
, and
Dixon-Warren
,
J.
, 2000, “
Determination of Moisture Diffusivity of Red Delicious Apple Tissues by Thermogravimetric Analysis
,”
Drying Technol.
0737-3937,
18
, pp.
1183
1199
.
27.
Hussain
,
M. M.
, and
Dincer
,
I.
, 2003, “
Two-Dimensional Heat and Moisture Transfer Analysis of a Cylindrical Moist Object Subjected to Drying: A Finite-Difference Approach
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4033
4039
.
28.
Sahin
,
A. Z.
,
Dincer
,
I.
,
Yilbas
,
B. S.
, and
Hussain
,
M. M.
, 2002, “
Determination of Drying Times for Regular Multi-Dimensional Objects
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1757
1766
.
29.
Kondjoyan
,
A.
, 2006, “
A Review on Surface Heat and Mass Transfer Coefficients During Air Chilling and Storage of Food Products
,”
Int. J. Refrig.
0140-7007,
29
, pp.
863
875
.
30.
Dincer
,
I.
, and
Hussain
,
M. M.
, 2002, “
Development of a New Bi–Di Correlation for Solids Drying
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3065
3069
.
31.
Araszkiewicz
,
M.
,
Koziol
,
A.
,
Lupinska
,
A.
, and
Lupinski
,
M.
, 2007, “
Microwave Drying of Various Shape Particles Suspended in an Air Stream
,”
Transp. Porous Media
0169-3913,
66
, pp.
173
186
.
32.
McMinn
,
W. A. M.
, and
Magee
,
T. R. A.
, 1996, “
Air Drying Kinetics of Potato Cylinders
,”
Drying Technol.
0737-3937,
14
, pp.
2025
2040
.
33.
Gögus
,
F.
, and
Maskan
,
M.
, 1999, “
Water Adsorption and Drying Characteristics of Okra (Hibiscus Esculenuts L.)
,”
Drying Technol.
0737-3937,
17
, pp.
883
894
.
34.
Panagiotou
,
N. M.
,
Krokida
,
M. K.
,
Maroulis
,
Z. B.
, and
Saravacos
,
G. D.
, 2004, “
Moisture Diffusivity: Literature Data Compilation for Foodstuffs
,”
Int. J. Food Prop.
1094-2912,
7
, pp.
273
299
.
35.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
36.
2005, ANSYS-CFX User Manual.
37.
Kaya
,
A.
,
Aydin
,
O.
, and
Dincer
,
I.
, 2006, “
Numerical Modeling of Heat and Mass Transfer During Forced Convection Drying of Rectangular Moist Objects
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3094
3103
.
38.
Krokida
,
M. K.
,
Foundoukidis
,
E.
, and
Maroulis
,
Z.
, 2004, “
Drying Constant: Literature Data Compilation for Foodstuffs
,”
J. Food. Eng.
0260-8774,
61
, pp.
321
330
.
39.
Simal
,
S.
,
Rossell
,
C.
,
Berna
,
A.
, and
Mulet
,
A.
, 1998, “
Drying of Shrinking Cylinder-Shaped Bodies
,”
J. Food. Eng.
0260-8774,
37
, pp.
423
435
.
40.
Kawaguti
,
M.
, and
Jain
,
P.
, 1966, “
Numerical Study of a Viscous Fluid Flow Past a Circular Cylinder
,”
J. Phys. Soc. Jpn.
0031-9015,
61
, pp.
1998
2055
.
41.
Biswas
,
G.
, and
Sarkar
,
S.
, 2009, “
Effect of Thermal Buoyancy on Vortex Shedding Past a Circular Cylinder in Cross-Flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
1897
1912
.
42.
Takami
,
H.
, and
Keller
,
H. B.
, 1969, “
Steady Two-Dimensional Viscous Flow of an Incompressible Fluid Past a Circular Cylinder
,”
Phys. Fluids
1070-6631,
12
, pp.
II
-51–II-
56
.
43.
Dennis
,
S. C. R.
, and
Chang
,
G. -Z.
, 1970, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100
,”
J. Fluid Mech.
0022-1120,
42
, pp.
471
489
.
44.
Zukauskas
,
A.
, and
Ziugzda
,
J.
, 1985,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere
,
New York
.
45.
Schönauer
,
W.
, 1964, “
Ein Differenzenverfahren zur Lösung der Grenzschichtgleichung für Stationäre, Laminare, Inkompressible Strömung
,”
Ing.-Arch.
0020-1154,
33
, pp.
173
.
46.
Jafroudi
,
H.
, and
Yang
,
H. T.
, 1986, “
Steady Laminar Forced Convection From a Circular Cylinder
,”
J. Comput. Phys.
0021-9991,
65
, pp.
46
56
.
47.
Apelt
,
C. J.
, and
Ledwich
,
M. A.
, 1979, “
Heat Transfer in Transient and Unsteady Flows Past a Circular Cylinder in the Range 1<Re<40
,”
J. Fluid Mech.
0022-1120,
95
, pp.
761
777
.
48.
Ozalp
,
A. A.
, and
Umur
,
H.
, 2003, “
An Experimental Investigation of the Combined Effects of Surface Curvature and Streamwise Pressure Gradients Both in Laminar and Turbulent Flows
,”
Heat Mass Transfer
0947-7411,
39
, pp.
869
876
.
49.
Umur
,
H.
, and
Ozalp
,
A. A.
, 2006, “
Fluid Flow and Heat Transfer in Transitional Boundary Layers: Effects of Surface Curvature and Free Stream Velocity
,”
Heat Mass Transfer
0947-7411,
43
, pp.
7
15
.
50.
Ozalp
,
A. A.
, 2009, “
Entropy Analysis of Laminar Forced Convection in a Pipe With Wall Roughness
,”
Int. J. Exergy
1742-8297,
6
, pp.
249
275
.
51.
Ozalp
,
A. A.
, 2008, “
Roughness Induced Forced Convective Laminar-Transitional Micropipe Flow: Energy and Exergy Analysis
,”
Heat Mass Transfer
0947-7411,
45
, pp.
31
46
.
52.
Obot
,
N. T.
, 2002, “
Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels—A Literature Review
,”
Microscale Thermophys. Eng.
1089-3954,
6
, pp.
155
173
.
53.
Turner
,
A. B.
,
Hubbe-Walker
,
S. E.
, and
Bayley
,
F. J.
, 2000, “
Fluid Flow and Heat Transfer Over Straight and Curved Rough Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
251
262
.
You do not currently have access to this content.