Micro heat pipes incorporating advanced wicks are promising for the thermal management of power electronics. We report the heat transfer performance of superhydrophilic Cu micropost wicks fabricated on thin silicon substrates using electrochemical deposition and controlled chemical oxidation. For a fixed post diameter, the interpost spacing and hence solid fraction is found to be a main design factor affecting the effective heat transfer coefficient and critical heat flux. The effective heat transfer coefficient >10 W/cm2 K and the critical heat flux >500 W/cm2 over 2 mm × 2 mm heating areas are demonstrated. Copper oxide nanostructures formed on the micropost surfaces significantly enhance the critical heat flux without compromising the effective heat transfer coefficient. An approximate numerical model is developed to help interpret the experimental data. A surface energy minimization algorithm is used to predict the static equilibrium shape of a liquid meniscus, which is then imported into a finite element model to predict the effective heat transfer coefficient. The advanced wick structures and experimental and modeling approaches developed in this work will help develop thin and lightweight thermal management solutions for high-power-density semiconductor devices.

References

1.
Peterson
,
G. P.
, 1992, “
Overview of Micro Heat Pipe Research and Development
,”
Appl. Mech. Rev.
,
45
, pp.
175
189
.
2.
Sobhan
,
C. B.
,
Rag
,
R. L.
, and
Peterson
,
G. P.
, 2007, “
A Review and Comparative Study of the Investigations on Micro Heat Pipes
,”
Int. J. Energy Res.
,
31
, pp.
664
688
.
3.
Boukhanouf
,
R.
,
Haddad
,
A.
,
North
,
M. T.
, and
Buffone
,
C.
, 2006, “
Experimental Investigation of a Flat Plate Heat Pipe Performance Using IR Thermal Imaging Camera
,”
Appl. Therm. Eng.
,
26
, pp.
2148
2156
.
4.
Launay
,
S.
,
Sartre
,
V.
, and
Lallemand
,
M.
, 2004, “
Experimental Study on Silicon Micro-Heat Pipe Arrays
,”
Appl. Therm. Eng.
,
24
, pp.
233
243
.
5.
Duncan
,
A. B.
, and
Peterson
,
G. P.
, 1994, “
Charge Optimization for a Triangular-Shaped Etched Micro Heat Pipe
,”
Int. J. Thermophys.
,
9
, pp.
365
368
.
6.
Semenic
,
T.
, and
Catton
,
I.
, 2009, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5113
5121
.
7.
J. de Bock
,
H. P.
,
Varanasi
,
K.
,
Chamarthy
,
P.
,
Deng
,
T.
,
Kulkarni
,
A.
,
Rush
,
B. M.
,
Russ
,
B. A.
, and
Weaver
,
S. E.
, 2008, “
Experimental Investigation of Micro/Nano Heat Pipe Wick Structures
,”
Proceedings of ASME IMECE 2008
,
Boston
, MA, pp.
2008
67288
.
8.
Ding
,
C.
,
Soni
,
G.
,
Bozorgi
,
P.
,
Piorek
,
B. D.
,
Meinhart
,
C. D.
, and
MacDonald
,
N. C.
, 2010, “
A Flat Heat Pipe Architecture Based on Nanostructured Titania
,”
J. Microelectromech. Syst.
,
19
, pp.
878
884
.
9.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
, 2003, “
Pool Boiling on a Superhydrophilic Surface
,”
Int. J. Energy Res.
,
27
, pp.
111
119
.
10.
Liu
,
Z.
, and
Qiu
,
Y.
, 2006, “
Critical Heat Flux of Steady Boiling for Water Jet Impingement in Flat Stagnation Zone on Superhydrophilic Surface
,”
J. Heat Transfer
,
128
, pp.
726
729
.
11.
Nam
,
Y.
,
Sharratt
,
S.
,
Byon
,
C.
,
Kim
,
S. J.
, and
Ju
,
Y. S.
, 2010, “
Fabrication and Characterization of the Capillary Performance of Superhydrophilic Cu Micropost Arrays
,”
J. Microelectromech. Syst.
,
19
, pp.
581
588
.
12.
Nam
,
Y.
, and
Ju
,
Y. S.
, 2008, “
Comparative Study of Copper Oxidation Schemes and Their Effects on Surface Wettability
,”
Proceedings of ASME IMECE 2008
,
Boston
, MA, pp.
2008
67492
.
13.
Cha
,
G.
, and
Ju
,
Y. S.
, 2009, “
Reversible Thermal Interfaces Based on Microscale Dielectric Liquid Layers
,”
Appl. Phys. Lett.
,
94
, p.
211904
.
14.
Cai
,
Q.
, and
Chen
,
C.-L.
, 2010, “
Design and Test of Carbon Nanotube Biwick Structure for High-Heat-Flux Phase Change Heat Transfer
,”
J. Heat Transfer
,
132
, p.
052403
.
15.
Iverson
,
B. D.
,
Davis
,
T. W.
, and
Garimella
,
S. V.
, 2007, “
Heat and Mass Transport in Heat Pipe Wick Structures
,”
J. Thermophys. Heat Transfer
,
21
, pp.
392
404
.
16.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
, 1975, “
Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
, p.
1323
.
17.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2009, “
Analysis of the Wicking and Thin-Film Evaporation Characteristics of Microstructures
,”
J. Heat Transfer
,
131
, p.
101001
.
18.
Mughal
,
M. P.
, and
Plumb
,
O. A.
, 1996, “
Experimental Study of Boiling on a Wicked Surface
,”
Int. J. Heat Mass Transfer
,
39
, pp.
771
777
.
19.
Williams
,
R. R.
, and
Harris
,
D. K.
, 2006, “
A Device and Technique to Measure the Heat Transfer Limit of a Planar Heat Pipe Wick
,”
Exp. Therm. Fluid Sci.
,
30
, pp.
277
284
.
20.
Reilly
,
S. W.
, and
Catton
,
I.
, 2009, “
Improving Biporous Heat Transfer by Addition of Monoporous Interface Layer
,”
Proceedings of ASME Summer Heat Transfer Conference
,
San Francisco, CA
, pp.
2009
88257
.
21.
Yeh
,
C.-C.
,
Chen
,
C.-N.
, and
Chen
,
Y.-M.
, 2009, “
Heat Transfer Analysis of a Loop Heat Pipe With Biporous Wicks
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4426
4434
.
22.
Hwang
,
G. S.
,
Fleming
,
E.
,
Carne
,
B.
,
Sharratt
,
S.
,
Nam
,
Y.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
, 2011, “
Multi-Artery Heat-Pipe Spreader: Lateral Liquid Supply
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2334
2340
.
23.
Hwang
,
G. S.
,
Nam
,
Y.
,
Fleming
,
E.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
, 2010, “
Multi-Artery Heat Pipe Spreader: Experiment
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2662
2669
.
24.
Brakke
,
K. A.
, 1992, “
The Surface Evolver
,”
Exp. Math.
,
1
, pp.
141
165
.
25.
Wayner
,
P. C.
, Jr.
, 1991, “
The Effect of Interfacial Mass Transport on Flow in Thin Liquid Films
,”
Colloids Surf.
,
52
, pp.
71
84
.
26.
Mills
,
A. F.
, and
Seban
,
R. A.
, 1967, “
The Condensation Coefficient of Water
,”
Int. J. Heat Mass Transfer
,
10
, pp.
1815
1827
.
27.
Carey
,
V. P.
, 2008,
Liquid-Vapor Phase-Change Phenomena
, 2nd ed.,
Taylor & Francis
,
New York
.
28.
Revellin
,
R.
,
Rullière
,
R.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
, 2009, “
Experimental Validation of an Analytic Model for Predicting the Thermal and Hydrodynamic Capabilities of Flat Micro Heat Pipes
,”
Appl. Therm. Eng.
,
29
, pp.
1114
1122
.
You do not currently have access to this content.