The classical problem of forced convection boundary layer flow and heat transfer past a needle with variable wall temperature using nanofluids is theoretically studied. The similarity equations are solved numerically for two types of metallic or nonmetallic, such as copper (Cu) and alumina (Al2O3) nanoparticles in the based fluid of water with the Prandtl number Pr=7 to investigate the effect of the solid volume fraction parameter ϕ of the fluid and heat transfer characteristics. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles are presented and discussed. It is found that the solid volume fraction affects the fluid flow and heat transfer characteristics.

1.
Narain
,
J. P.
, and
Uberoi
,
M. S.
, 1972, “
Combined Forced and Free-Convection Heat Transfer From Vertical Thin Needles in a Uniform Stream
,”
Phys. Fluids
1070-6631,
15
, pp.
1879
1882
.
2.
Narain
,
J. P.
, and
Uberoi
,
M. S.
, 1973, “
Combined Forced and Free-Convection Over Thin Needles
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
1505
1512
.
3.
Chen
,
J. L. S.
, and
Smith
,
T. N.
, 1978, “
Forced Convection Heat Transfer From Nonisothermal Thin Needles
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
358
362
.
4.
Chen
,
J. L. S.
, 1987, “
Mixed Convection Flow About Slender Bodies of Revolution
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
1033
1036
.
5.
Wang
,
C. Y.
, 1990, “
Mixed Convection on a Vertical Needle With Heated Tip
,”
Phys. Fluids A
0899-8213,
2
, pp.
622
625
.
6.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Development and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, ASME MD-vol.
231
and FED-vol. 66, pp.
99
105
.
7.
Trisaksri
,
S.
, and
Wongwises
,
V.
, 2007, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
512
523
.
8.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, 2003, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3639
3653
.
9.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
617
623
.
10.
Tiwari
,
R. K.
, and
Das
,
M. K.
, 2007, “
Heat Transfer Augmentation in a Two-Sided LID-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2002
2018
.
11.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
, 2008, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
1326
1336
.
12.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradet
,
T.
, 2007,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
13.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
14.
Wang
,
X. -Q.
, and
Mujumdar
,
A. S.
, 2008, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
0104-6632,
25
, pp.
613
630
.
15.
Wang
,
X. -Q.
, and
Mujumdar
,
A. S.
, 2008, “
A Review on Nanofluids—Part II: Experiments and Applications
,”
Braz. J. Chem. Eng.
0104-6632,
25
, pp.
631
648
.
16.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
, 2009, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3187
3196
.
17.
Abu-Nada
,
E.
, 2010, “
Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
052401
.
You do not currently have access to this content.