The present investigation provides detailed local heat/mass transfer and pressure drop characteristics in a matrix cooling channel, under rotating conditions. The matrix channel had cooling subpassages with crossing angles of 45 deg. The detailed heat/mass transfer coefficients were measured via the naphthalene sublimation method, and pressure drops were also obtained. The experiments were conducted for various Reynolds numbers (10,500 to 44,000) and rotation numbers (0.0 to 0.8). In the stationary case, the heat transfer characteristics were dominated by turning, impinging, and swirling flow, induced by the matrix channel geometry. Average heat/mass transfer coefficients on the leading and trailing surfaces in the stationary channel were approximately 2.1 times greater than those in a smooth channel. In the rotating cases, the effect of rotation on heat/mass transfer characteristics differed from that of typical rotating channels with radially outward flow. As the rotation number increased, the Sherwood number ratios increased on the leading surfaces but changed only slightly on the trailing surfaces. The thermal performance factors increased with rotation number due to the increased Sherwood number ratios and decreased friction factor ratios.

References

1.
Park
,
J. S.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Chyu
,
M. K.
, 2011, “
Heat Transfer in Rotating Channel With Inclined Pin-Fins
,”
ASME J. Turbomach.
,
133
, p.
021003
.
2.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
, 2011, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
, p.
021001
.
3.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
, 2008, “
Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
ASME J. Turbomach.
,
130
, p.
041003
.
4.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling With Crossflow
,”
ASME J. Heat Transfer
,
129
, pp.
1697
1707
.
5.
Sundberg
,
J.
, 2006,
The Heat Transfer Correlations for Gas Turbine Cooling
,
Linköping University
,
Linköping, Sweden
, pp.
38
63
.
6.
Goreloff
,
V.
,
Goychengerg
,
M.
, and
Malkoff
,
V.
, 1990, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
AIAA Paper No. 90-2144
.
7.
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
, 2000, “
Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,”
ASME Turbo Expo 2000, Paper No. 2000-GT-653
.
8.
Bunker
,
R. S.
, 2004, “
Latticework (vortex) Cooling Effectiveness Part 1: Stationary Channel Experiments
,”
ASME Turbo Expo 2004, Paper No. GT 2004-54157
.
9.
Saha
,
K.
,
Acharya
,
S.
,
Guo
,
S.
, and
Nakamata
,
C.
, 2008, “
Heat Transfer and Pressure Measurement in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
ASME Turbo Expo 2008, Paper No. GT 2008-51324
.
10.
Su
,
S.
,
Liu
,
J. J.
,
Fu
,
J. L.
,
Hu
,
J.
, and
An
,
B. T.
, 2008, “
Numerical Investigation of Fluid Flow and Heat Transfer in a Turbine Blade With Serpentine Passage and Latticework Cooling
,”
ASME Turbo Expo 2008, Paper No. GT 2008-50392
.
11.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
, 2005, “
Latticework (vortex) Cooling Effectiveness Part 2: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
, pp.
471
478
.
12.
Oh
,
I. T.
,
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2008, “
Measurement of Local Heat/Mass Transfer in a Matrix Cooling Channel
,”
TFEC 2008, Paper No. TFEC2008-FULL-0299
.
13.
Oh
,
I. T.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Park
,
J. S.
, and
Cho
,
H. H.
, 2009, “
Local Heat/Mass Transfer and Friction Loss Measurements in a Rotating Matrix Cooling Channels
,”
ASME Turbo Expo 2009, Paper No. GT 2009-59873
.
14.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2008, “
Heat/Mass Transfer Measurement on Concave Surface in Rotating Jet Impingement
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1952
1958
.
15.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sparke
,
C. H. S.
, 1975, “
The Vapor Pressure of Naphthalene
,”
J. Chem. Thermodyn.
,
7
, pp.
1173
1176
.
16.
Goldstein
,
R. J.
, and
Cho
,
H.H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
416
434
.
17.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdel
,
R. B.
, 1985, “
Measurement Uncertainty
,”
ASME J. Fluid Eng.
,
107
, pp.
161
164
.
18.
McAdams
,
W. H.
, 1942,
Heat Transmission
, 2nd ed.,
McGraw-Hill
,
New York
.
19.
Petukhov
,
B. S.
, 1970,
Advances in Heat Transfer
, Vol.
6
,
Academic
,
New York
, pp.
503
504
.
20.
Gee
,
D. L.
and
Webb
,
R. L.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat and Mass Transfer
,
23
, pp.
1127
1136
.
21.
Jun
,
Y. H.
,
Park
,
S. H.
,
Kim
,
K. M.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Effects of Bleed Flow on Heat/Mass Transfer in a Rotating Rib-Roughened Channel
,”
ASME J. Turbomach.
,
129
, pp.
636
642
.
22.
Kim
,
K. M.
,
Park
,
S. H.
,
Jun
,
Y. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2008, “
Heat/Mass Transfer Characteristics in Angled Ribbed Channels With Various Bleed Ratios and Rotation Numbers
,”
ASME J. Turbomach.
,
130
, p.
031021
.
You do not currently have access to this content.