To obtain more in-depth knowledge about the microscopic process during laser sintering, phase change processes including melting, evaporation, and resolidification during the irradiation of femtosecond laser on nanosized gold particles were simulated. The effects of multiple reflections and pulse energy overlapping in small particle size were considered. The results show that when the particle size is big enough, the simulation results match those of old model. When the particle size is small and laser fluence is high, no resolidification takes place in the time range of the simulation. The laser fluence range to achieve partial melting is narrow when the particle is small. When the diameter is smaller than 400 nm, temperature gradient during the heating period is ignorable, which is different from the large particles. The threshold value of laser fluence to achieve vaporization is about two times higher than that of melting with the same particle size.

References

1.
Deckard
,
C. R.
, 1988, “
Selective Laser Sintering
,” Ph.D. thesis, University of Texas, Austin, TX.
2.
Deckard
,
C. R.
, 1989, “
Method and Apparatus for Producing Parts by Selective Sintering
,” U.S. Patent No. 4, 538.
3.
Deckard
,
C. R.
, and
Beaman
,
J. J.
, 1987, “
Solid Freeform Fabrication and Selective Powder Sintering
,”
Proceedings of the 15th NAMRC-SME
, Bethlehem, PA, pp.
636
640
.
4.
Kumar
,
S.
, 2010, “
Selective Laser Sintering: Recent Advances
,”
4th Pacific International Conference on Applications of Lasers and Optics
, Wuhan, China, p.
8
.
5.
Tolochko
,
N. K.
,
Mozzharov
,
S. E.
,
Yadroitsev
,
I. A.
,
Laoui
,
T.
,
Froyen
,
L.
,
Titov
,
V. I.
, and
Ignatiev
,
M. B.
, 2004, “
Balling Processes During Selective Laser Treatment of Powders
,”
Rapid Prototyping J.
,
10
(
2
), pp.
78
87
.
6.
Bunnell
,
D. E.
, 1995, “
Fundamentals of Selective Laser Sintering of Metals
,” Ph.D. thesis, University of Texas, Austin, TX.
7.
Manzur
,
T.
,
DeMaria
,
A. J.
,
Chen
,
W.
, and
Roychoudhuri
,
C.
, 1996, “
Potential Role of High-Power Laser Diode in Manufacturing
,”
Proc. SPIE
,
2703
, pp.
490
501
.
8.
Abe
,
F.
, Costa
Santos
,
E.
,
Kitamura
,
Y.
,
Osakada
,
K.
, and
Shiomi
,
M.
, 2003, “
Influence of Forming Conditions on the Titanium Model in Rapid Prototyping With the Selective Laser Melting Process
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
,
217
(
1
), pp.
119
126
.
9.
Su
,
W. N.
,
Erasenthiran
,
P.
, and
Dickens
,
P. M.
, 2003, “
Investigation of Fully Dense Laser Sintering of Tool Steel Powder Using a Pulsed Nd: YAG Laser
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
,
217
(
1
), pp.
127
138
.
10.
Morgan
,
R.
,
Sutcliffe
,
C. J.
, and
O’Neill
,
W.
, 2001, “
Experimental Investigation of Nanosecond Pulsed Nd:YAG Laser Re-Melted Pre-Placed Powder Beds
,”
Rapid Prototyping J.
,
7
(
3
), pp.
159
172
.
11.
Beal
,
V. E.
,
Erasenthiran
,
P.
,
Hopkinson
,
N.
,
Dickens
,
P.
, and
Ahrens
,
C. H.
, 2008, “
Scanning Strategies and Spacing Effect on Laser Fusion of H13 Tool Steel Powder Using High Power Nd:YAG Pulsed Laser
,”
Int. J. Prod. Res.
,
46
(
1
), pp.
217
232
.
12.
Fischer
,
P.
,
Blatter
,
A.
,
Romano
,
V.
, and
Weber
,
H. P.
, 2005, “
Selective Laser Sintering of Amorphous Metal Powder
,”
Appl. Phys. A: Mater. Sci. Process.
,
80
(
3
), pp.
489
492
.
13.
Fischer
,
P.
,
Leber
,
H.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Andre
,
C.
, and
Glardon
,
R.
, 2004, “
Microstructure of Near-Infrared Pulsed Laser Sintered Titanium Samples
,”
Appl. Phys. A: Mater. Sci. Process.
,
78
(
8
), pp.
1219
1227
.
14.
Fischer
,
P.
,
Romano
,
V.
,
Blatter
,
A.
, and
Weber
,
H. P.
, 2005, “
Highly Precise Pulsed Selective Laser Sintering of Metallic Powders
,”
Laser Phys. Lett.
,
2
(
1
), pp.
48
55
.
15.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Boillat
,
E.
, and
Glardon
,
R.
, 2003, “
Sintering of Commercially Pure Titanium Powder With a Nd:YAG Laser Source
,”
Acta Mater.
,
51
(
6
), pp.
1651
1662
.
16.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
, and
Kolossov
,
S.
, 2004, “
Pulsed Laser Sintering of Metallic Powders
,”
Thin Solid Films
,
453–454
, pp.
139
144
.
17.
Shishkovsky
,
I. V.
,
Volova
,
L. T.
,
Kuznetsov
,
M. V.
,
Morozov
,
Y. G.
, and
Parkin
,
I. P.
, 2008, “
Porous Biocompatible Implants and Tissue Scaffolds Synthesized by Selective Laser Sintering From Ti and NiTi
,”
J. Mater. Chem.
,
18
(
12
), pp.
1309
1317
.
18.
Gusarov
,
A. V.
, 2010, “
Radiation Transfer in Metallic-Powder Beds During Laser Forming
,”
Quantum Electron.
,
40
(
5
), pp.
451
459
.
19.
Yilbas
,
B. S.
, 1995, “
Study Into a Numerical Solution for a Pulsed CO2 Laser Heating Process
,”
Numer. Heat Transfer; Part A
,
28
(
4
), pp.
487
502
.
20.
Yilbas
,
B. S.
,
Sami
,
M.
, and
Abualhamayel
,
H. I.
, 1998, “
3-Dimensional Modeling of Laser Repetitive Pulse Heating: A Phase Change and a Moving Heat Source Considerations
,”
Appl. Surf. Sci.
,
134
(
1–4
), pp.
159
178
.
21.
Rostami
,
A. A.
, and
Raisi
,
A.
, 1997, “
Temperature Distribution and Melt Pool Size in a Semi-Infinite Body Due to a Moving Laser Heat Source
,”
Numer. Heat Transfer; Part A
,
31
(
7
), pp.
783
796
.
22.
Fischer
,
P.
,
Karapatis
,
N.
,
Romano
,
V.
,
Glardon
,
R.
, and
Weber
,
H. P.
, 2002, “
A Model for the Interaction of Near-Infrared Laser Pulses With Metal Powders in Selective Laser Sintering
,”
Appl. Phys. A: Mater. Sci. Process.
,
74
(
4
), pp.
467
474
.
23.
Petrushina
,
M. V.
,
Pogudo
,
E. L.
, and
Chivel
,
Y. A.
, 2006, “
Simulation of the Process of Sintering of Spherical Powders Under the Effect of Pulsed Laser Radiation
,”
High Temp.
,
44
(
1
), pp.
151
155
.
24.
Zhang
,
Y.
, and
Chen
,
J. K.
, 2008, “
Ultrafast Melting and Resolidification of Gold Particle Irradiated by Pico- to Femtosecond Lasers
,”
J. Appl. Phys.
,
104
(
5
), p.
05491001
.
25.
Shi
,
Y.
,
Zhang
,
Y.
, and
Konrad
,
C.
, 2007, “
Solid-Liquid-Vapor Phase Change of a Subcooled Metal Powder Particle Subjected to Nanosecond Laser Heating
,”
Nanoscale and Microscale Thermophys. Eng.
,
11
(
3–4
), pp.
301
318
.
26.
Konrad
,
C.
,
Zhang
,
Y.
, and
Shi
,
Y.
, 2007, “
Melting and Resolidification of a Subcooled Metal Powder Particle Subjected to Nanosecond Laser Heating
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2236
2245
.
27.
Bennett
,
F. D.
, 1965, “
Vaporization Waves as a General Property of High Temperature Matter
,”
Phys. Fluids
,
8
(
8
), pp.
1425
1427
.
28.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel’man
,
T. L.
, 1974, “
Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys. JETP
,
39
(
2
), pp.
375
377
.
29.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J Heat Trans
,
115
(
4
), pp.
835
841
.
30.
Chen
,
J. K.
,
Tzou
,
D. Y.
, and
Beraun
,
J. E.
, 2006, “
A Semiclassical Two-Temperature Model for Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
307
316
.
31.
Anisimov
,
S. I.
, and
Rethfeld
,
B.
, 1997, “
Theory of Ultrashort Laser Pulse Interaction With a Metal
,”
Proc. SPIE
,
3093
, pp.
192
203
.
32.
Klemens
,
P. G.
, and
Williams
,
R. K.
, 1986, “
Thermal Conductivity of Metals and Alloys
,”
Int. Metals Rev.
,
31
(
5
), pp.
197
215
.
33.
Chen
,
J. K.
,
Latham
,
W. P.
, and
Beraun
,
J. E.
, 2005, “
The Role of Electron-Phonon Coupling in Ultrafast Laser Heating
,”
J. Laser Appl.
,
17
(
1
), pp.
63
68
.
34.
Kuo
,
L.-S.
, and
Qiu
,
T.
, 1996, “
Microscale Energy Transfer During Picosecond Laser Melting of Metal Films
,”
ASME Heat Transfer Div. Publ. HTD
,
323
(
1
), pp.
149
157
.
35.
Wellershoff
,
S. S.
,
Hohlfeld
,
J.
,
Güdde
,
J.
, and
Matthias
,
E.
, 1999, “
The Role of Electron-Phonon Coupling in Femtosecond Laser Damage of Metals
,”
Appl. Phys. A: Mater. Sci. Process.
,
69
(
7
), pp.
S99
S107
.
36.
Faghri
,
A.
, and
Zhang
,
Y.
, 2006,
Transport Phenomena in Multiphase Systems
,
Elsevier/Academic Press
,
Burlington, MA
.
37.
Huang
,
J.
,
Zhang
,
Y.
and
Chen
,
J. K.
, 2011, “
Superheating in Liquid and Solid Phases During Femtosecond Laser Pulse Interaction With Thin Metal Film
,”
Appl. Phys. A: Mater. Sci. Process.
,
103
(
1
), pp.
113
121
.
38.
Bennett
,
F. D.
, 1965, “
Vaporization Waves as a General Property of High Temperature Matter
,”
Phys. Fluids
,
8
(
8
), pp.
1425
1427
.
39.
Bennett
,
F. D.
, 1971, “
Vaporization-Wave Transitions
,”
Physics of High Energy Density
,
P.
Caldirola
and
H.
Knoepfel
, eds.,
Academic Press
,
New York
.
40.
Barin
,
L.
, 1993,
Thermochemical Data of Pure Substance, Part I
,
Wiley VCH
,
New York
.
You do not currently have access to this content.