Flow characteristics and heat transfer performances in a rectangular microchannel with dimples/protrusions are studied numerically in this research. The height and the width of the microchannel is 200 μm and 50 μm, respectively. The dimple/protrusion diameter is 100 μm, and the depth is 20 μm. The effects of Reynolds number, streamwise pitch, and arrangement pattern are examined. The numerical simulations are conducted using water as the coolant with the Reynolds number ranging from 100 to 900. The results show that dimple/protrusion technique in mcirochannel has the potential to provide heat transfer enhancement with low pressure penalty. The normalized Nusselt number is within the range from 1.12 to 4.77, and the corresponding normalized friction factor is within the range from 0.94 to 2.03. The thermal performance values show that the dimple + protrusion cases perform better than the dimple + smooth cases. The flow characteristics of the dimples/protrusions in microchannel are similar to those in conventional channel. Furthermore, from the viewpoint of energy saving, dimples/protrusions in microchannel behave better than those in conventional channel. Also from the viewpoint of field synergy principle, the synergy of the dimple + protrusion cases are much better than the dimple + smooth cases. Moreover, the synergy becomes worse with the increase in the Reynolds number and decrease in the streamwise pitch.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat-Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
, 2004, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
,
8
, pp.
183
205
.
3.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
4.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2006, “
Thermally Developing Flow and Heat Transfer in Rectangular Mircochannels
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3060
3067
.
5.
Arik
,
M.
, and
Bunker
,
R. S.
, 2006, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
215
225
.
6.
Hong
,
F. J.
, and
Cheng
,
P.
, 2009, “
Three Dimensional Numerical Analyses and Optimization of Offset Strip-Fin Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
651
656
.
7.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
, 2010, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2760
2772
.
8.
Fischer
,
M.
,
Juric
,
D.
, and
Poulikakos
,
D.
, 2010, “
Large Convective Heat Transfer Enhancement in Microchannels With a Train of Coflowing Immiscible or Colloidal Droplets
,”
Trans. ASME J. Heat Transfer
,
132
, p.
112402
.
9.
Liu
,
C.
,
Teng
,
J. T.
,
Chu
,
J. C.
, and
Chiu
,
Y. L.
, 2011, “
Experimental Investigations on Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3069
3080
.
10.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
, 1993, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
, pp.
1
8
.
11.
Moon
,
H. K.
,
O’Connel
,
T.
, and
Glezer
,
B.
, 2000, “
Channel Height Effect on Heat Transfer and Friction in a Dimple Passage
,”
J. Eng. Gas Turbines Power
,
122
, pp.
307
313
.
12.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmmod
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.
13.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2002, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transf.
,
45
, pp.
2011
2020
.
14.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
, 2001, “
Flow Structure and Local Nusselt Number Variation in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4413
4425
.
15.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
,
15
(
3
), pp.
275
283
.
16.
Won
,
S. Y.
,
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2005, “
Comparisons of Flow Structure Above Dimpled Surfaces With Different Dimple Depths in a Channel
,”
Phys. Fluids
,
17
, p.
045105
.
17.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
Trans. ASME J. Heat Transfer
,
125
, pp.
11
18
.
18.
Moon
,
S. W.
, and
Lau
,
S. C.
, 2002, “
Turbulent Heat Transfer Measurements on a Wall With Concave and Cylindrical Dimples in a Square Channel
,”
ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, GT2002-30208.
19.
Small
,
E.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
, 2006, “
Heat Sinks With Enhanced Heat Transfer Capability for Electronic Cooling Applications
,”
ASME J. Electron. Packag.
,
128
, pp.
285
290
.
20.
Silva
,
C.
,
Marotta
,
E.
, and
Fletcher
,
L.
, 2007, “
Flow Structure and Enhanced Heat Transfer in Channel Flow with Dimpled Surfaces: Applications to Heat Sinks in Microelectronic Cooling
,”
Trans. ASME J. Electron. Packag.
,
129
, pp.
157
166
.
21.
Silva
,
C.
,
Park
,
D.
,
Marotta
,
E.
, and
Fletcher
,
L.
, 2009, “
Optimization of Fin Performance in a Laminar Channel Flow Through Dimpled Surfaces
,”
Trans. ASME J. Heat Transfer
,
131
(
2
), p.
021702
.
22.
Xiao
,
N.
,
Zhang
,
Q.
,
Ligrani
,
P. M.
, and
Mongia
,
R.
, 2009, “
Thermal Performance of Dimpled Surfaces in Laminar Flows
,”
Int. J. Heat Mass Transf.
,
52
, pp.
2009
2017
.
23.
Isaev
,
S. A.
,
Leont’ev
,
A. I.
,
Frolov
,
D. P.
, and
Kharchenko
,
V. B.
, 1998, “
Identification of Self-Organizing Structures by the Numerical Simulation of Laminar Threedimensional Flow Around a Crater on a Plane by a Flow of Viscous Incompressible Fluid
,”
Tech. Phys. Lett.
,
24
(
3
), pp.
209
211
.
24.
Park
,
J.
,
Desam
,
P. R.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure Above a Dimpled Surface in a Channel
,”
Numer. Heat Transfer, Part A
,
45
(
1
), pp.
1
20
.
25.
Wang
,
Z. Y.
,
Yeo
,
K. S.
, and
Khoo
,
B. C.
, 2006, “
DNS of Low Reynolds Number Turbulent Flows in Dimpled Channels
,”
J. Turbul.
,
7
(
37
), pp.
1
31
.
26.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
, 2007, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a MicroChannel With One Dimpled Wall
,”
Trans. ASME J. Electron. Packag.
,
129
, pp.
63
70
.
27.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
, 2009, “
Flow and Heat Transfer Characteristics of Dimpled Multilouvered Fins
,”
J. Enhanced Heat Transfer
,
16
, pp.
43
60
.
28.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
, 2010, “
Effect of Coriolis Forces in a Rotating Channel With Dimples and Protrusions
,”
Int. J. Heat Fluid Flow
,
31
, pp.
1
18
.
29.
Gee
,
D. L.
, and
Webb
,
R. L.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1127
1136
.
30.
Belnap
,
B. J.
,
van Rij
J. A.
,
Ligrani
,
P. M.
, 2002, “
A Reynolds Analogy for Real Component Surface Roughness
,”
Int. J. Heat Mass Transf.
,
45
, pp.
3089
3099
.
31.
Murata
,
A.
, and
Mochizuki
,
S.
, 2004, “
Centrifugal Buoyancy Effect on Turbulent Heat Transfer in a Rotating Ttwo-Pass Smooth Square Channel With Sharp 180-Deg Turns
,”
Int. J. Heat Mass Transf.
,
47
, pp.
3215
3231
.
32.
Uzol
,
O.
, and
Camci
,
C.
, 2005, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
Trans. ASME J. Heat Transfer
,
127
, pp.
458
471
.
33.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
34.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
35.
Fan
,
J. F.
,
Ding
,
W. K.
,
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
A Performance Evaluation Plot of Enhanced Heat Transfer Techniques Oriented for Energy-Saving
,”
Int. J. Heat Mass Transfer
,
52
, pp.
33
44
.
36.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
, 1998, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transf.
,
41
(
14
), pp.
2221
2225
.
37.
Zeng
,
M.
and
Tao
,
W. Q.
, 2004, “
Numerical Verification of the Field Synergy Principle for Turbulent Flow
,”
J. Enhanced Heat Transfer
,
11
, pp.
451
457
.
38.
Cheng
,
Y.
,
Qu
,
Z. G.
,
Tao
W. Q
, and
He
,
Y. L.
, 2004, “
Numerical Design of Efficient Slotted Fin Surface Based on the Field Synergy Principle
,”
Numer. Heat Transfer, Part A.
,
45
, pp.
517
538
.
39.
Li
,
Z.
,
Tao
,
W. Q.
, and
He
,
Y. L.
, 2006, “
A Numerical Study of Laminar Convective Heat Transfer in Microchannel With Non-Circular Cross-Section
,”
Int. J. Therm. Sci.
,
45
, pp.
1140
1148
.
40.
Bhattacharya
,
P.
,
Samanta
,
A. N.
, and
Chakraborty
,
S.
, 2009, “
Numerical Study of Conjugate Heat Transfer in Rectangular Microchannel Heat Sink With Al2O3/H2O Nanofluid
,”
Heat Mass Transfer
,
45
, pp.
1323
1333
.
You do not currently have access to this content.