Free convection heat transfer in nanofluids from vertical flat plates at uniform temperature is investigated theoretically. The main idea upon which the present work is based is that nanofluids behave more like single-phase fluids rather than like conventional solid–liquid mixtures. This assumption implies that all the convective heat transfer correlations available in the literature for single-phase flows can be extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this connection, two empirical equations, based on a wide variety of experimental data reported in the literature, are used for the evaluation of the nanofluid effective thermal conductivity and dynamic viscosity. Conversely, the other effective properties are computed by the traditional mixing theory. The heat transfer enhancement that derives from the dispersion of nanosized solid particles into the base liquid is calculated for different operating conditions, nanoparticle diameters, and combinations of solid and liquid phases. The fundamental result obtained is the existence of an optimal particle loading for maximum heat transfer. In particular, for any assigned combination of suspended nanoparticles and base liquid, it is found that the optimal volume fraction increases as the nanofluid average temperature increases, the nanoparticle size decreases, and the Rayleigh number of the base fluid decreases.

References

References
1.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
, 2007,
“A Critical Review of Convective Heat Transfer in Nanofluids,”
Renewable Sustainable Energy Rev.
,
11
, pp.
797
817
.
2.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008,
“Thermophysical and Electrokinetic Properties of Nanofluids—A Critical Review,”
Appl. Therm. Eng.
,
28
, pp.
2109
2125
.
3.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
, 2009,
“Review of Convective Heat Transfer Enhancement With Nanofluid,”
Int. J. Heat Mass Transfer
,
52
, pp.
3187
3196
.
4.
Maxwell-Garnett
,
J. C.
, 1904,
“Colours in Metal Glasses and in Metallic Films,”
Philos. Trans. R. Soc. London A
,
203
, pp.
385
420
.
5.
Brinkman
,
H. C.
, 1952,
“The Viscosity of Concentrated Suspensions and Solutions,”
J. Chem. Phys.
,
20
, p.
571
.
6.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962,
“Thermal Conductivity of Heterogeneous Two Component Systems,”
Ind. Eng. Chem. Fundam.
,
1
, pp.
187
191
.
7.
Bruggemann
,
D. A. G.
, 1935,
“Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen,”
Ann. Phys.
,
24
, pp.
636
679
.
8.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
,
Yip
,
S.
,
Rusconi
,
R.
, and
Piazza
,
R.
, 2007,
“Mean-field Versus Microconvection Effects in Nanofluid Thermal Conduction,”
Phys. Rev. Lett.
,
99
,
095901
.
9.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
, 2009,
“A Benchmark Study on the Thermal Conductivity of Nanofluids,”
J. Appl. Phys.
,
106
, p.
094319
.
10.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003,
“Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,”
Trans. ASME J. Heat Transfer
,
125
, pp.
567
574
.
11.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006,
“Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids),”
J. Appl. Phys.
,
99
,
084314
.
12.
Yu
,
W.
,
Xie
,
H.
,
Chen
,
L.
, and
Li
,
Y.
, 2010,
“Investigation on the Thermal Transport Properties of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,”
Powder Technol.
,
197
, pp.
218
221
.
13.
Chen
,
H.
,
Ding
,
Y.
, and
Tan
,
C.
, 2007,
“Rheological Behaviour of Nanofluids,”
New J. Phys.
,
9
,
367
.
14.
Chen
,
H.
,
Ding
,
Y.
,
He
,
Y.
, and
Tan
,
C.
, 2007,
“Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids,”
Chem. Phys. Lett.
,
444
, pp.
333
337
.
15.
Chevalier
,
J.
,
Tillement
,
O.
, and
Ayela
,
F.
, 2007,
“Rheological Properties of Nanofluids Flowing Through Microchannels,”
Appl. Phys. Lett.
,
91
, p.
233103
.
16.
Einstein
,
A.
, 1906,
“Eine neue Bestimmung der Molekuldimension,”
Ann. Phys.
,
19
, pp.
289
306
.
17.
Einstein
,
A.
, 1911,
“Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekuldimension,”
Ann. Phys.
,
34
, pp.
591
592
.
18.
Polidori
,
G.
,
Fohanno
,
S.
, and
Nguyen
,
C. T.
, 2007,
“A Note on Heat Transfer Modelling of Newtonian Nanofluids in Laminar Free Convection,”
Int. J. Therm. Sci.
,
46
, pp.
739
744
.
19.
Maiga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
, 2004,
“Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube,”
Superlattices Microstruct.
,
35
, pp.
543
557
.
20.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, 1999,
“Thermal Conductivity of Nanoparticle-Fluid Mixture,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.
21.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
, 2010,
“Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate,”
Int. J. Therm. Sci.
,
49
, pp.
243
247
.
22.
Buongiorno
,
J.
, 2006,
“Convective Transport in Nanofluids,”
Trans. ASME J. Heat Transfer
,
128
, pp.
240
250
.
23.
Popa
,
C.
,
Fohanno
,
S.
,
Nguyen
,
C. T.
, and
Polidori
,
G.
, 2010,
“On Heat Transfer in External Natural Convection Flows Using Ttwo Nanofluids,”
Int. J. Therm. Sci.
,
49
, pp.
901
908
.
24.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
, 2009,
“New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids,”
Int. J. Therm. Sci.
,
48
, pp.
363
371
.
25.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
S.
, and
Mintsa
H. A.
, 2007,
“Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon,”
Int. J. Fluid Flow
,
28
, pp.
1492
1506
.
26.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
, 2006,
“Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications,”
Appl. Phys. Lett.
,
89
, p.
133108
.
27.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993,
“Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles),”
Netsu Bussei
,
4
, pp.
227
233
.
28.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998,
“Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles,”
Exp. Heat Transfer
,
11
, pp.
151
170
.
29.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999,
“Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,”
Trans. ASME J. Heat Transfer
,
121
, pp.
280
289
.
30.
Kim
,
J
,
Kang
,
Y. T.
, and
Choi
,
C. K.
, 2004,
“Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids,”
Phys. Fluids
,
16
, pp.
2395
2401
.
31.
Hwang
,
K. S.
,
Lee
,
J.-H.
, and
Jang
,
S. P.
, 2007,
“Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity,”
Int. J. Heat Mass Transfer
,
50
, pp.
4003
4010
.
32.
Corcione
,
M.
, 2010,
“Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls,”
Int. J. Therm. Sci.
,
49
, pp.
1536
1546
.
33.
Corcione
,
M.
, 2011,
“Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions,”
Int. J. Heat Fluid Flow
,
32
, pp.
65
77
.
34.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
, 1975,
“Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate,”
Int. J. Heat Mass Transfer
,
18
, pp.
1323
1329
.
35.
Bejan
,
A.
, 2004,
Convection Heat Transfer
, 3rd ed.,
Wiley
,
Hoboken, NJ
, p.
215
.
36.
Martynenko
,
O. G.
, and
Khramtsov
,
P. P.
, 2005,
Free-Convective Heat Transfer
,
Springer-Verlag
,
Berlin
, p.
89
.
37.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
, p.
571
.
38.
Corcione
,
M.
, 2011,
“Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids,”
Energy Convers. Manage
,
52
, pp.
789
793
.
39.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001,
“Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.
40.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005,
“Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement,”
Appl. Phys. Lett.
,
87
,
153107
.
41.
Chon
,
C. H.
, and
Kihm
,
K. D.
, 2005,
“Thermal Conductivity Enhancement of Nanofluids by Brownian Motion,”
Trans. ASME J Heat Trans
,
127
, p.
810
.
42.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, 2008,
“Investigations of Thermal Conductivity and Viscosity of Nanofluids,”
Int. J. Therm. Sci.
,
47
, pp.
560
568
.
43.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
, 2009,
“Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids,”
Exp. Therm. Fluid Sci.
,
33
, pp.
706
714
.
44.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, 2003,
“Natural Convection of Nano-Fluids,”
Heat Mass Transfer
,
39
, pp.
775
784
.
45.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003,
“Pool Boiling Characteristics of Nano-Fluids,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.
46.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
, 2007,
“Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
.
47.
Lee
,
J.-H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
, 2008,
“Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles,”
Int. J. Heat Mass Transfer
,
51
, pp.
2651
2656
.
48.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
, 2008,
“Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid,”
J. Appl. Phys.
,
103
,
074301
.
You do not currently have access to this content.