Vacuum super insulation (VSI) with expanded perlite powder is commonly used at cryogenic temperatures, but principally can also be adapted to applications at higher temperatures, such as the long-term storage of hot water in solar thermal systems. Due to the lack of experimental data in the respective temperature range, especially without external load, thermal conductivity measurements have been performed with commercial perlite powder up to 150°C mean sample temperature, corresponding to storage temperatures of around 300°C. Two different experimental geometries have been used: a guarded hot plate (GHP) setup and a cut-off concentric cylinder (CCC) apparatus. Furthermore, the radiative heat transport has been determined separately by extinction measurements using Fourier transform infrared (FTIR) spectroscopy. In addition to the laboratory experiments, a real-size prototype of a solar VSI-storage tank with 16.4 m3 water storage volume has been constructed, and the effective thermal conductivity of the perlite insulation has been determined from a heat loss measurement. The heat transport in evacuated perlite has also been treated theoretically using common models and approaches for gas heat conduction, solid-body conduction and heat transfer by thermal radiation. For the coupling between solid-body and gas conduction which occurs in the intergranular spaces of a powder material, a simple model has been developed. The total effective thermal conductivity λeff of a vacuum super insulation with dry, evacuated perlite powder (p0.01mbar,ρ60kg/m3) amounts to 0.007–0.016 W/mK for mean sample temperatures between 50°C and 150°C, compared to 0.003–0.005 W/mK at cryogenic temperatures. For the real-size storage prototype, the value λeff=0.009W/mK has been obtained at T=90°C (storage temperature), p = 0.08 mbar and ρ=92.4kg/m3, which compares to 0.03–0.06 W/mK for dry conventional storage insulations. With the applied theoretical models and approaches, the effective thermal conductivity of evacuated perlite and its individual contributions can successfully be described at different densities (55-95kg/m3), compression methods, vacuum pressures (10-3-1000mbar) and filling gases (air, Ar, Kr) up to mean sample temperatures of T=150°C. With regard to practical purposes, it has shown that vacuum super insulation with perlite is a suitable and economic method to achieve low thermal conductivities also at medium storage temperatures.

References

1.
Hofmann
,
A.
,
1965
, “
Messungen der Wärmeleitfähigkeit von Pulvervakuumisolierungen
,” Berichte aus Technik und Wissenschaft 19, Linde AG, Munich, pp.
18
23
.
2.
Rettelbach
,
T.
,
Sator
,
D.
,
Korder
,
S.
, and
Fricke
,
J.
,
1996
, “
Thermal Conductivity of Evacuated Insulating Powders for Temperatures From 10 K to 275 K
,”
Therm. Conduct.
,
23
, pp.
383
394
.
3.
Stauss-Perlite GmbH
,
2011
, Product Data Sheet “Technoperl®,” www.europerl.at
4.
Stauss-Perlite GmbH
,
2011
, Information Sheet “Cryogenic-Europerl®,” www.europerl.at
5.
Steger
,
H.
,
2012
, Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany, “REM pictures.”
6.
Fricke
,
J.
,
Schwab
,
H.
, and
Heinemann
,
U.
,
2006
, “
Vacuum Insulation Panels—Exciting Thermal Properties and Most Challenging Applications
,”
Int. J. Thermophys.
,
27
(
4
), pp.
1123
1139
.10.1007/s10765-006-0106-6
7.
Deimling
,
A.
,
1983
, “
Wärmedämmung von Vakuum-Stahlmantel-Fernheizrohren
,” Ph.D. dissertation, Department of Biochemical and Chemical Engineering, Technical University of Dortmund, Dortmund, Germany.
8.
Deimling
,
A.
,
Steiff
,
A.
, and
Weinspach
,
P.-M.
,
1984
, “
Vakuum-Wärmedämmung bei Stahlmantel-Fernheizrohren
,”
Wärme- und Stoffübertragung
,
18
, pp.
129
140
.
9.
Caps
,
R.
, and
Fricke
,
J.
,
2000
, “
Thermal Conductivity of Opacified Powder Filler Materials for Vacuum Insulations
,”
Int. J. Thermophys.
,
21
(
2
), pp.
445
452
.10.1023/A:1006691731253
10.
Kwon
,
J.-S.
,
Jang
,
C. H.
,
Jung
,
H.
, and
Song
,
T.-H.
,
2009
, “
Effective Thermal Conductivity of Various Filling Materials for Vacuum Insulation Panels
,”
Int. J. Heat Mass Transfer
,
52
(
23-24
), pp.
5525
5532
.10.1016/j.ijheatmasstransfer.2009.06.029
11.
Krischer
,
O.
, and
Kast
,
W.
,
1992
,
Trocknungstechnik, Vol. 1: Die Wissenschaftlichen Grundlagen der Trocknungstechnik
, 3rd ed.,
Springer Verlag
,
Berlin
, Chap. 6.1.
12.
Ochs
,
F.
,
Heidemann
,
W.
, and
Müller-Steinhagen
,
H.
,
2008
, “
Effective Thermal Conductivity of Moistened Insulation Materials as a Function of Temperature
,”
Int. J. Heat Mass Transfer
,
51
, pp.
539
552
.10.1016/j.ijheatmasstransfer.2007.05.005
13.
Swimm
,
K.
,
Reichenauer
,
G.
,
Vidi
,
S.
, and
Ebert
,
H.-P.
,
2009
, “
Gas Pressure Dependence of the Heat Transport in Porous Solids With Pores Smaller Than 10μm
,”
Int. J. Thermophys.
,
30
, pp.
1329
1342
.10.1007/s10765-009-0617-z
14.
Lide
,
D.
,
2008
,
CRC Handbook of Chemistry and Physics
, 88th ed.,
CRC Press
,
Boca Raton, FL
, p.
212
.
15.
Verein Deutscher Ingenieure
,
2002
,
VDI Wärmeatlas: Berechnungsblätter für den Wärmeübergang
, 9th ed.,
Sp
ringer Verlag
,
Berlin
.
16.
Knudsen
,
M.
,
1911
, “
Die molekulare Wärmeleitung der Gase und der Akkommodationskoeffizient
,”
Ann. Phys.
,
34
(
4
), pp.
593
656
.10.1002/andp.19113390402
17.
Scott
,
R. B.
,
1959
,
Cryogenic Engineering
,
D. van Nostrand Company
,
New York
.
18.
Kennard
,
E. H.
,
1938
,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
.
19.
Sherman
,
F. S.
,
1963
, “
A Survey of Experimental Results and Methods for the Transition Regime of Rarefied Gas Dynamics
,”
Rarefied Gas Dynamics
, Vol. 2,
J. A.
Lauermann
, ed.,
Academic Press
,
New York
, pp.
228
260
.
20.
Kaganer
,
M. G.
,
1969
,
Thermal Insulation in Cryogenic Engineering
,
Israel Program for Scientific Translations
,
Jerusalem
.
21.
Wolf
,
J. R.
, and
Strieder
,
W. C.
,
1994
, “
Pressure-Dependent Gas Heat Transport in a Spherical Pore
,”
AIChE J.
,
40
(
8
), pp.
1287
1296
.10.1002/aic.690400803
22.
Beikircher
,
T.
,
1996
, “
Gaswärmeleitung in Evakuierten Sonnenkollektoren
,” Ph.D. dissertation, Faculty of Physics, Ludwig Maximilian University of Munich, Munich, Germany.
23.
Beikircher
,
T.
,
Benz
,
N.
, and
Spirkl
,
W.
,
1998
, “
A Modified Temperature-Jump Method for the Transition and Low-Pressure Regime
,”
ASME J. Heat Trans.
,
120
(
4
), pp.
965
970
.10.1115/1.2825916
24.
Zeng
,
S. Q.
,
Hunt
,
A. J.
, and
Greif
,
R.
,
1995
, “
Mean Free Path and Apparent Thermal Conductivity of a Gas in a Porous Medium
,”
ASME J. Heat Trans.
,
117
(
3
), pp.
758
761
.10.1115/1.2822642
25.
Wei
,
G.
,
Liu
,
Y.
,
Du
,
X.
, and
Zhang
,
X.
,
2012
, “
Gaseous Conductivity Study on Silica Aerogel and Its Composite Insulation Materials
,”
ASME J. Heat Trans.
,
134
(4), p.
041301
.10.1115/1.4004170
26.
Saxena
,
S. C.
, and
Joshi
,
R. K.
,
1989
,
Thermal Accommodation and Adsorption Coefficients of Gases
,
Hemisphere Publishing
,
New York
.
27.
Napp
,
V.
,
Caps
,
R.
,
Ebert
,
H.-P.
, and
Fricke
,
J.
,
1999
, “
Optimization of the Thermal Radiation Extinction of Silicon Carbide in a Silica Powder Matrix
,”
J. Therm. Anal. Calorim.
,
56
(
1
), pp.
77
85
.10.1023/A:1010131324100
28.
Siegel
,
R.
,
Howell
,
J. R.
, and
Lohrengel
,
J.
,
1993
,
Wärmeübertragung Durch Strahlung
,
Springer Verlag
,
Berlin
.
29.
Fricke
,
J.
,
1993
, “
Materials Research for the Optimization of Thermal Insulation
,”
High Temp.-High Press.
,
25
, pp.
379
390
.
30.
Caps
,
R.
,
1985
, “
Strahlungswärmeströme in Evakuierten Thermischen Superisolationen
,” Ph.D. dissertation, Faculty of Physics and Astronomy, University of Würzburg, Würzburg, Germany.
31.
Rosseland
,
S.
,
1936
,
Theoretical Astrophysics: Atomic Theory and the Analysis of Stellar Atmospheres and Envelopes
,
Clarendon Press
,
Oxford
.
32.
Zehner
,
P.
, and
Schlünder
,
E. U.
,
1972
, “
Einfluß der Wärmestrahlung und des Druckes auf den Wärmetransport in Nicht Durchströmten Schüttungen
,”
Chem.-Ing.-Tech.
,
44
(
23
), pp.
1303
1308
.10.1002/cite.330442305
33.
Demharter
,
M.
,
2011
, “
Heat Transport in Evacuated Perlite Powder Insulations and Its Application in Long-Term Hot Water Storages
,” M.Sc. thesis, Physics Department, Technical University of Munich, Munich, Germany.
34.
Büttner
,
D.
,
Fricke
,
J.
, and
Reiss
,
H.
,
1985
, “
Analysis of Radiative and Solid Conducting Components of the Total Thermal Conductivity of an Evacuated Glass Fiber Insulation: Measurements With a (700 × 700) mm2 Variable Load Guarded Hot Plate Device
,” 20th Thermophysics Conference, American Institute of Aeronautics and Astronautics, Williamsburg, VA.
35.
Heinemann
,
U.
,
Hetfleisch
,
J.
,
Caps
,
R.
,
Kuhn
,
J.
, and
Fricke
,
J.
,
1995
, “
Evacuable Guarded Hot Plate for Thermal Conductivity Measurements Between −200 °C and 800 °C
,”
Advances in Thermal Insulation—Proceedings of the Eurotherm Seminar No. 44
, Espinho, Portugal, pp.
155
164
.
36.
Jousten
,
K.
,
2006
,
Wutz Handbuch Vakuumtechnik
, 9th ed.,
Vieweg + Teubner Verlag
,
Wiesbaden
.
37.
Dassault Systèmes SolidWorks Corporation
,
2012
, Waltham, MA, http://www.solidworks.com
38.
Çengel
,
Y. A.
,
1998
,
Heat Transfer—A Practical Approach
,
McGraw-Hill
,
New York
.
39.
Griffiths
,
P. R.
, and
de Haseth
,
J. A.
,
2007
,
Fourier Transform Infrared Spectrometry
, 2nd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
40.
Fricke
,
J.
, and
Caps
,
R.
,
1988
, “
Heat Transfer in Thermal Insulations—Recent Progress in Analysis
,”
Int. J. Thermophys.
,
9
(
5
), pp.
885
895
.10.1007/BF00503253
41.
Beikircher
,
T.
,
Benz
,
N.
, and
Spirkl
,
W.
,
1995
, “
Gas Heat Conduction in Evacuated Flat-Plate Solar Collectors: Analysis and Reduction
,”
ASME J. Sol. Energ.
,
117
(
3
), pp.
229
235
.10.1115/1.2847807
You do not currently have access to this content.