A steady laminar forced convection in a parallel–plane channel using nanofluids is studied. The flow is assumed to be fully developed, and described through the Hagen–Poiseuille profile. A boundary temperature varying with the longitudinal coordinate in the thermal entrance region is prescribed. Two sample cases are investigated in detail: a linearly changing wall temperature, and a sinusoidally changing wall temperature. A study of the thermal behavior of the nanofluid is performed by solving numerically the fully–elliptic coupled equations. The numerical solution is obtained by a Galerkin finite element method implemented through the software package Comsol Multiphysics (© Comsol, Inc.). With reference to both the wall temperature distributions prescribed along the thermal entrance region, the governing equations have been solved separately both for the fully developed region and for the thermal entrance region. The analysis shows that if a linearly varying boundary temperature is assumed, for physically interesting values of the Péclet number the concentration field depends very weakly on the temperature distribution. On the other hand, in case of a longitudinally periodic boundary temperature, nonhomogeneities in the nanoparticle concentration distribution arise, which are wrongly neglected whenever the homogeneous model is employed.

References

1.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticle
,”
Developments and Applications of Non-Newtonian Flows
, ASME FED-Vol. 231/MD-Vol. 66,
D. A.
Siginer
,
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
2.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles (Dispersion of c-Al2O3, SiO2 and TiO2 Ultra Fine Particles)
,”
Netsu Bussei, Japan
, Vol.
4
, pp.
227
233
.10.2963/jjtp.7.227
3.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluid Containing Oxide Nanoparticle
,”
ASME J. Heat Transfer
,
121
, pp.
280
289
.10.1115/1.2825978
4.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticle
,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.10.1063/1.1341218
5.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
6.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
, pp.
797
817
.10.1016/j.rser.2005.06.005
7.
Tham
,
L.
,
Nazar
,
R.
, and
Pop
,
I.
,
2013
, “
Steady Mixed Convection Flow on a Horizontal Circular Cylinder Embedded in a Porous Medium Filled by a Nanofluid Containing Gyrotactic Micro-Organisms
,”
ASME J. Heat Transfer
,
135
, p.
102601
.10.1115/1.4024387
8.
Mustafa
,
M.
,
Hina
,
S.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2013
, “
Slip Effects on the Peristaltic Motion of Nanofluid in a Channel With Wall Properties
,”
ASME J. Heat Transfer
,
135
, p.
041701
. 10.1115/1.4023038
9.
Raisi
,
A.
,
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2013
, “
Magnetohydrodynamic Mixed Convection of a Cu-Water Nanofluid in a Vertical Channel
,”
ASME J. Heat Transfer
,
135
, p.
074501
10.1115/1.4023880.
10.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2013
, “
An Historical and Topical Note on Convection in Porous Media
,”
ASME J. Heat Transfer
,
135
, p.
061201
10.1115/1.4023567.
11.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.10.1115/1.2150834
12.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
13.
Shah
,
R. K.
, and
Bhatti
,
M. S.
,
1987
, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 3.
14.
Barletta
,
A.
, and
Magyari
,
E.
,
2006
, “
Thermal Entrance Heat Transfer of an Adiabatically Prepared Fluid With Viscous Dissipation in a Tube With Isothermal Wall
,”
ASME J. Heat Transfer
,
128
, pp.
1185
1193
.10.1115/1.2352784
15.
Barletta
,
A.
,
Rossi di Schio
,
E.
,
Comini
,
G.
, and
D'Agaro
,
P.
,
2008
, “
Conjugate Forced Convection Heat Transfer in a Plane Channel: Longitudinally Periodic Regime
,”
Int. J. Therm. Sci.
,
47
, pp.
43
51
.10.1016/j.ijthermalsci.2007.01.013
16.
Barletta
,
A.
,
Rossi di Schio
,
E.
,
Comini
,
G.
, and
D'Agaro
,
P.
,
2009
, “
Wall Coupling Effect in Channel Forced Convection With Streamwise Periodic Boundary Heat Flux Variation
,”
Int. J. Therm. Sci.
,
48
, pp.
699
707
.10.1016/j.ijthermalsci.2008.06.003
17.
Barletta
,
A.
,
Rossi di Schio
,
E.
, and
Selmi
,
L.
,
2011
, “
Thermal Nonequilibrium and Viscous Dissipation in the Thermal Entrance Region of a Darcy Flow With Streamwise Periodic Boundary Conditions
,”
ASME J. Heat Transfer
,
133
, p.
072602
.10.1115/1.4003557
18.
McNab
,
G. S.
, and
Meisen
,
A.
,
1973
, “
Thermophoresis in Liquids
,”
J. Colloid Interface Sci.
,
44
, pp.
339
346
.10.1016/0021-9797(73)90225-7
19.
Magyari
,
E.
,
2011
, “
Comment on the Homogeneous Nanofluid Models Applied to Convective Heat Transfer Problems
,”
Acta Mech.
,
222
, pp.
381
385
.10.1007/s00707-011-0532-9
You do not currently have access to this content.