We present results of modeling for the design of microgaps for the removal of high heat fluxes via a strategy of high mass flux, high quality, and two-phase forced convection. Modeling includes (1) thermodynamic analysis to obtain performance trends across a wide range of candidate coolants, (2) evaluation of worst-case pressure drop due to contraction and expansion in inlet/outlet manifolds, and (3) 1D reduced-order simulations to obtain realistic estimates of different contributions to the pressure drops. The main result is the identification of a general trend of improved heat transfer performance at higher system pressure.
Issue Section:
Evaporation, Boiling, and Condensation
References
1.
Bar-Cohen
, A.
, Wang
, P.
, and Rahim
, E.
, 2007
, “Thermal Management of High Heat Flux Nanoelectronic Chips
,” Microgravity Sci. Technol.
, 19
(3
), pp. 48
–52
.2.
Mahajan
, C.
, Chia-pin
, C.
, and Chrysler
, G.
, 2006
, “Cooling a Microprocessor Chip
,” Proc. IEEE
, 94
(8
), pp. 1476
–1486
.3.
Shein
, E.
, 2013
, “Keeping Computers Cool From the Inside
,” Commun. ACM
, 56
(7
), pp. 13
–16
.4.
Agostini
, B.
, Fabbri
, M.
, Park
, J. E.
, Wojtan
, L.
, Thome
, J. R.
, and Michel
, B.
, 2007
, “State of the Art of High Heat Flux Cooling Technologies
,” Heat Transfer Eng.
, 28
(4
), pp. 258
–281
.5.
Kim
, Y. J.
, Joshi
, Y. K.
, Fedorov
, A. G.
, Lee
, Y. J.
, and Lim
, S. K.
, 2010
, “Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
,” ASME J. Heat Transfer
, 132
(4
), p. 041009
.6.
Alam
, T.
, Lee
, P. S.
, Yap
, C. R.
, and Jin
, L.
, 2012
, “Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,” Int. J. Multiphase Flow
, 42
, pp. 164
–174
.7.
Bar-Cohen
, A.
, Sheehan
, J. R.
, and Rahim
, E.
, 2012
, “Two-Phase Thermal Transport in Microgap Channels-Theory, Experimental Results, and Predictive Relations
,” Microgravity Sci. Technol.
, 24
(1
), pp. 1
–15
.8.
Qu
, W. L.
, and Mudawar
, I.
, 2003
, “Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,” Int. J. Heat Mass Transfer
, 46
(15
), pp. 2737
–2753
.9.
Qu
, W.
, and Mudawar
, I.
, 2004
, “Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,” ASME J. Electron. Packag.
, 126
(2
), pp. 213
–224
.10.
Park
, J. E.
, Thome
, J. R.
, and Michel
, B.
, 2009
, “Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks
,” 25th
SEMI-THERM
, San Jose, CA, Mar. 15–19, pp. 1
–8
.11.
Alam
, T.
, Lee
, P. S.
, Yap
, C. R.
, and Jin
, L.
, 2013
, “A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,” Int. J. Heat Mass Transfer
, 58
(1–2
), pp. 335
–347
.12.
Thome
, J. R.
, 2006
, “State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels
,” Heat Transfer Eng.
, 27
(9
), pp. 4
–19
.13.
Bertsch
, S. S.
, Groll
, E. A.
, and Garimella
, S. V.
, 2008
, “Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,” Nanoscale Microscale Thermophys. Eng.
, 12
(3
), pp. 187
–227
.14.
Kandlikar
, S. G.
, and Balasubramanian
, P.
, 2004
, “An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels
,” Heat Transfer Eng.
, 25
(3
), pp. 86
–93
.15.
Thome
, J. R.
, and Consolini
, L.
, 2010
, “Mechanisms of Boiling in Micro-Channels: Critical Assessment
,” Heat Transfer Eng.
, 31
(4
), pp. 288
–297
.16.
Klein
, S.
, and Alvarado
, F.
, 2002
, Engineering Equation Solver
, F-Chart Software
, Madison, WI
.17.
Wallis
, G. B.
, 1980
, “Critical Two-Phase Flow
,” Int. J. Multiphase Flow
, 6
(1–2
), pp. 97
–112
.18.
Kim
, D. W.
, Rahim
, E.
, Bar-Cohen
, A.
, and Han
, B.
, 2008
, “Thermofluid Characteristics of Two-Phase Flow in Micro-Gap Channels
,” 11th IEEE Intersociety Conference on Thermal Thermomechanical Phenomena in Electronic Systems
(I-THERM
), Orlando, FL, May 28–31, pp. 979
–992
.19.
Chen
, J. C.
, 1966
, “Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,” Ind. Eng. Chem. Process Des. Dev.
, 5
(3
), pp. 322
–329
.20.
Consolini
, L.
, and Thome
, J. R.
, 2009
, “Micro-Channel Flow Boiling Heat Transfer of R-134a, R236fa, and R-245fa
,” Microfluid. Nanofluid.
, 6
(6
), pp. 731
–746
.21.
Marcinichen
, J. B.
, Thome
, J. R.
, and Michel
, B.
, 2010
, “Cooling of Microprocessors With Micro-Evaporation: A Novel Two-Phase Cooling Cycle
,” Int. J. Refrig.
, 33
(7
), pp. 1264
–1276
.22.
Lockhart
, R. W.
, and Martinelli
, R. C.
, 1949
, “Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,” Chem. Eng. Prog.
, 45
(1
), pp. 39
–48
.23.
Lee
, J.
, and Mudawar
, I.
, 2005
, “Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications—Part I: Pressure Drop Characteristics
,” Int. J. Heat Mass Transfer
, 48
(5
), pp. 928
–940
.24.
Thome
, J. R.
, 2004
, Engineering Data Book III
, Wolverine Tube, Inc.
, Decatur, AL
, Chap. 17.Copyright © 2016 by ASME
You do not currently have access to this content.