The immersed boundary method (IBM) is gaining attention in the computational fluid dynamics but its applications in the field of a conjugated radiative–conductive or radiative–convective heat transfer seem limited. Therefore, the paper presents extension of this method to heat transfer problems dominated by thermal radiation in a nongray medium. The present model enables simulation of heat and fluid flows in a domain with complex stationary or moving internal and external boundaries on a fixed Cartesian grid (FCG) by applying the finite volume method. The special attention is paid to modeling thermal radiation and optical phenomena at highly curved, opaque, or transparent boundaries which confine the computational domain or separate zones of different thermophysical and optical properties, e.g., different values of a refractive index. The model is limited to a 2D planar or axisymmetric spaces. Detailed verification procedure proves accuracy and correctness of the developed model and shows its potential application field. The model may be used for simulations of a conjugated radiative–conductive or radiative–convective heat transfer in a nongray medium in a complex domain with opaque or transparent curved internal or external boundaries without unstructured or body fitted mesh generation.

References

1.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Method
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.
2.
Howell
,
L. H.
, and
Beckner
,
V. E.
,
1997
, “
Discrete Ordinates Algorithm for Domains with Embedded Boundaries
,”
J. Thermophys. Heat Transfer
,
11
(
4
), pp.
549
555
.
3.
Byun
,
Y. D.
,
Baek
,
S. W.
, and
Kim
,
M. Y.
,
2003
, “
Investigation of Radiative Heat Transfer in Complex Geometries Using Blocked-off, Multiblock, and Embedded Boundary Treatments
,”
Numer. Heat Transfer A Appl.
,
43
(
8
), pp.
807
825
.
4.
Łapka
,
P.
, and
Furmański
,
P.
,
2010
, “
Fixed Grid Simulation of Radiation-Conduction Dominated Solidification Process
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023504
.
5.
Łapka
,
P.
, and
Furmański
,
P.
,
2011
, “
Effects of Refractive Index on the Bridgman Oxide Crystals Growth Process—Numerical Analysis
,”
AIP Conf. Proc.
,
1389
, pp.
159
162
.
6.
Łapka
,
P.
, and
Furmański
,
P.
,
2012
, “
Fixed Cartesian Grid Based Numerical Model for Solidification Process of Semi-Transparent Materials I: Modelling and Verification
,”
Int. J. Heat Mass Transfer
,
55
(19–20), pp.
4941
4952
.
7.
Łapka
,
P.
, and
Furmański
,
P.
,
2012
, “
Fixed Cartesian Grid Based Numerical Model for Solidification Process of Semi-Transparent Materials II: Reflection and Refraction or Transmission of the Thermal Radiation at the Solid-Liquid Interface
,”
Int. J. Heat Mass Transfer
,
55
(19–20), pp.
4953
4964
.
8.
Seredyński
,
M.
,
Łapka
,
P.
,
Banaszek
,
J.
, and
Furmański
,
P.
,
2015
, “
Front Tracking Method in Modeling Transport Phenomena Accompanying Liquid–Solid Phase Transition in Binary Alloys and Semitransparent Media
,”
Int. J. Heat Mass Trans.
,
90
, pp.
790
799
.
9.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1992
, “
A General Enthalpy Method for Modeling Solidification Processes
,”
Metall. Trans. B
,
23B
(5), pp.
651
663
.
10.
Seredyński
,
M.
, and
Banaszek
,
J.
,
2010
, “
Front Tracking Based Macroscopic Calculations of Columnar and Equiaxed Solidification of a Binary Alloy
,”
ASME J. Heat Transfer
,
132
(
10
), p.
102301
.
11.
Liang
,
M. C.
, and
Lan
,
C. W.
,
1996
, “
A Finite-Volume/Newton Method for Two-Phase Heat Flow Problem Using Primitive Variables and Collocated Grids
,”
J. Comput. Phys.
,
127
(
2
), pp.
330
345
.
12.
Amiri
,
H.
,
Mansouri
,
S. H.
, and
Coelho
,
P. J.
,
2012
, “
Application of Modified Discrete Ordinates Method to Combined Conduction-Radiation Heat Transfer Problems in Irregular Geometries
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
7
), pp.
862
879
.
13.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
Academic Press
,
San Diego, CA
.
14.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
1992
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
15.
Glassner
,
A. S.
,
1990
,
An Introduction to Ray Tracing
,
Morgan Kaufmann Publishers
,
San Francisco, CA
.
16.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
1004
1012
.
17.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
An Absorption-Line Blackbody Distribution Function for Efficient Calculation of Total Gas Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
50
(
5
), pp.
499
510
.
18.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
Development and Application of an Absorption Line Blackbody Distribution Function for CO2
,”
Int. J. Heat Mass Trans.
,
38
(
10
), pp.
1813
1821
.
19.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
359
365
.
20.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
788
792
.
21.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics. The Finite Volume Method
,
Pearson Harlow
,
London
.
22.
Chai
,
J. C.
,
Parthasarathy
,
G.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1995
, “
Finite Volume Radiation Heat Transfer Procedure for Irregular Geometries
,”
J. Thermophys. Heat Transfer
,
9
(
3
), pp.
410
415
.
23.
Perron
,
S.
,
Boivin
,
S.
, and
Herard
,
J.-M.
,
2004
, “
A New Finite Volume Discretization Scheme to Solve 3D Incompressible Thermal Flows on Unstructured Meshes
,”
Int. J. Therm. Sci.
,
43
(
9
), pp.
833
848
.
24.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
25.
Udaykumar
,
H.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Khanna
,
A.
,
2001
, “
A Sharp Interface Cartesian Grid Method for Simulating Flows With Complex Moving Boundaries
,”
J. Comput. Phys.
,
174
(
1
), pp.
345
380
.
26.
Pasdnkorale
,
J. A.
, and
Turner
,
I. W.
,
2003
, “
A Second Order Control Volume Technique for Simulating Transport in Anisotropic Media
,”
Int. J. Numer. Method H
,
13
(
1
), pp.
31
56
.
27.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2000
, “
A Finite-Volume Scheme for Radiative Heat Transfer in Semitransparent Media
,”
Numer. Heat Transfer B: Fundam.
,
37
(1), pp.
25
43
.
28.
Kaminski
,
D. A.
,
1989
, “
Radiative Transfer From a Gray, Absorbing-Emitting, Isothermal Medium in a Conical Enclosure
,”
ASME J. Sol. Energy Eng.
,
111
(
4
), pp.
324
329
.
29.
Kim
,
M. Y.
, and
Baek
,
S. W.
,
2005
, “
Modeling of Radiative Heat Transfer in an Axisymmetric Cylindrical Enclosure with Participating Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
90
(3–4), pp.
377
388
.
30.
Muresan
,
C.
,
Vaillon
,
R.
,
Menezo
,
C.
, and
Morlot
,
R.
,
2004
, “
Discrete Ordinates Solution of Coupled Conductive Radiative Heat Transfer in a Two-Layer Slab With Fresnel Interfaces Subject to Diffuse and Obliquely Collimated Irradiation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
84
(
4
), pp.
551
562
.
31.
Goutière
,
V.
,
Charette
,
A.
, and
Kiss
,
L.
,
2002
, “
Comparative Performance of Non-Gray Gas Modeling Techniques
,”
Numer. Heat Transfer B: Fundam.
,
41
(3–4), pp.
361
381
.
32.
Amiri
,
H.
, and
Coelho
,
P. J.
,
2015
, “
Natural Element Method for Non-Gray Radiation Heat Transfer Problems
,”
Int. J. Therm. Sci.
,
95
, pp.
9
20
.
33.
Brandon
,
S.
, and
Derby
,
J. J.
,
1992
, “
Heat Transfer in Vertical Bridgman Growth of Oxides: Effects of Conduction, Convection, and Internal Radiation
,”
J. Cryst. Growth
,
121
(
3
), pp.
473
494
.
34.
Lan
,
C. W.
,
Tu
,
C. Y.
, and
Lee
,
Y. F.
,
2003
, “
Effects of Internal Radiation on Heat Flow and Facet Formation in Bridgman Growth of YAG Crystals
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1629
1640
.
You do not currently have access to this content.