Numerical simulations of metal alloy solidification are used to gain insight into physical phenomena that cannot be observed experimentally. These models produce results that are used to draw conclusions about a process or alloy and often compared to experimental results. However, uncertainty in model inputs cause uncertainty in model results, which have the potential to significantly affect conclusions drawn from their predictions. As a step toward understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis are performed on a transient model of solidification of Al–4.5 wt % Cu in a rectangular cavity. The binary alloy considered has columnar solidification morphology, and this model solves equations for momentum, temperature, and species conservation. UQ and sensitivity analysis are performed for the degree of macrosegregation and solidification time. A Smolyak sparse grid algorithm is used to select input values to construct a polynomial response surface fit to model outputs. This polynomial is then used as a surrogate for the complete solidification model to determine the sensitivities and probability density functions (PDFs) of the model outputs. Uncertain model inputs of interest include the secondary dendrite arm spacing (SDAS), heat transfer coefficient, and material properties. The most influential input parameter for predicting the macrosegregation level is the dendrite arm spacing, which also strongly depends on the choice of permeability model. Additionally, the degree of uncertainty required to produce accurate predictions depends on the outputs of interest from the model.

References

1.
Beckermann
,
C.
,
2002
, “
Modelling of Macrosegregation: Applications and Future Needs
,”
Int. Mater. Rev.
,
5
, pp.
243
261
.
2.
Ahmadein
,
M.
,
Wu
,
M.
, and
Ludwig
,
A.
,
2015
, “
Analysis of Macrosegregation Formation and Columnar-to-Equiaxed Transition During Solidification of Al–4 wt.%Cu Ingot Using a 5-Phase Model
,”
J. Cryst. Growth
,
417
, pp.
65
74
.
3.
Chernatynskiy
,
A.
,
Phillpot
,
S. R.
, and
LeSar
,
R.
,
2013
, “
Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
157
182
.
4.
Hunt
,
M.
,
Haley
,
B.
,
McLennan
,
M.
,
Koslowski
,
M.
,
Murthy
,
J.
, and
Strachan
,
A.
,
2015
, “
PUQ: A Code for Non-Intrusive Uncertainty Propagation in Computer Simulations
,”
Comput. Phys. Commun.
,
194
, pp.
97
107
.
5.
Reddy
,
A. V.
, and
Beckermann
,
C.
,
1997
, “
Modeling of Macrosegregation Due to Thermosolutal Convection and Contraction-Driven Flow in Direct Chill Continuous Casting of an Al–Cu Round Ingot
,”
Metall. Mater. Trans. B
,
28
(
3
), pp.
479
489
.
6.
Vreeman
,
C. J.
, and
Incropera
,
F. P.
,
2000
, “
The Effect of Free-Floating Dendrites and Convection on Macrosegregation in Direct Chill Cast Aluminum Alloys Part II: Predictions for Al–Cu and Al–Mg Alloys
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
687
704
.
7.
Yanke
,
J.
,
Fezi
,
K.
,
Trice
,
R. W.
, and
Krane
,
M. J. M.
,
2015
, “
Simulation of Slag Skin Formation in Electroslag Remelting Using a Volume-of-Fluid Method
,”
Numer. Heat Transfer, Part A: Appl.
,
67
(
3
), pp.
268
292
.
8.
Fezi
,
K.
,
Yanke
,
J.
, and
Krane
,
M. J. M.
,
2015
, “
Macrosegregation During Electroslag Remelting of Alloy 625
,”
Metall. Mater. Trans. B
,
46
(2), pp.
766
779
.
9.
Wasserstein
,
R. L.
,
1997
, “
Monte Carlo: Concepts, Algorithms, and Applications
,”
Technometrics
,
39
(
3
), p. 338.
10.
Koslowski
,
M.
, and
Strachan
,
A.
,
2011
, “
Uncertainty Propagation in a Multiscale Model of Nanocrystalline Plasticity
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1161
1170
.
11.
Babaee
,
H.
,
Wan
,
X.
, and
Acharya
,
S.
,
2013
, “
Effect of Uncertainty in Blowing Ratio on Film Cooling Effectiveness
,”
ASME J. Heat Transfer
,
136
(3), p.
031701
.
12.
Marepalli
,
P.
,
Murthy
,
J. Y.
,
Qiu
,
B.
, and
Ruan
,
X.
,
2014
, “
Quantifying Uncertainty in Multiscale Heat Conduction Calculations
,”
ASME J. Heat Transfer
,
136
(
11
), p.
111301
.
13.
Sarangi
,
S.
,
Bodla
,
K. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2014
, “
Manifold Microchannel Heat Sink Design Using Optimization Under Uncertainty
,”
Int. J. Heat Mass Transfer
,
69
, pp.
92
105
.
14.
Schneider
,
M. C.
, and
Beckermann
,
C.
,
1995
, “
A Numerical Study of the Combined Effects of Microsegregation, Mushy Zone Permeability and Flow, Caused by Volume Contraction and Thermosolutal Convection, on Macrosegregation and Eutectic Formation in Binary Alloy Solidification
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3455
3473
.
15.
Kumar
,
A.
,
Zaloznik
,
M.
, and
Combeau
,
H.
,
2012
, “
Study of the Influence of Mushy Zone Permeability Laws on Macro- and Meso-Segregations Predictions
,”
Int. J. Therm. Sci.
,
54
, pp.
33
47
.
16.
Bhat
,
M. S.
,
Poirier
,
D. R.
, and
Heinrich
,
J. C.
,
1995
, “
Permeability for Cross Flow Through Columnar-Dendritic Alloys
,”
Metall. Mater. Trans. B
,
26
(
5
), pp.
1049
1056
.
17.
Bhat
,
M. S.
,
Poirier
,
D. R.
, and
Heinrich
,
J. C.
,
1995
, “
A Permeability Length Scale for Cross Flow Through Model Structures
,”
Metall. Mater. Trans. B
,
26
(
5
), pp.
1091
1092
.
18.
Brown
,
S. G. R.
,
Spittle
,
J. A.
,
Jarvis
,
D. J.
, and
Walden-Bevan
,
R.
,
2002
, “
Numerical Determination of Liquid Flow Permeabilities for Equiaxed Dendritic Structures
,”
Acta Mater.
,
50
(
6
), pp.
1559
1569
.
19.
Drummond
,
J. E.
, and
Tahir
,
M. I.
,
1984
, “
Laminar Viscous Flow Through Regular Arrays of Parallel Solid Cylinders
,”
Int. J. Multiphase Flow
,
10
(
5
), pp.
515
540
.
20.
Ganesan
,
S.
,
Chan
,
C. L.
, and
Poirier
,
D. R.
,
1992
, “
Permeability for Flow Parallel to Primary Dendrite Arms
,”
Mater. Sci. Eng. A
,
151
(
1
), pp.
97
105
.
21.
Krane
,
M. J. M.
, and
Vušanović
,
I.
,
2009
, “
Macrosegregation in Horizontal Direct Chill Casting of Aluminium Slabs
,”
Mater. Sci. Technol.
,
25
(
1
), pp.
102
107
.
22.
Ares
,
A. E.
,
Gueijman
,
S. F.
, and
Schvezov
,
C. E.
,
2010
, “
An Experimental Investigation of the Columnar-to-Equiaxed Grain Transition in Aluminum–Copper Hypoeutectic and Eutectic Alloys
,”
J. Cryst. Growth
,
312
(14), pp.
2154
2170
.
23.
Bennon
,
W. D.
, and
Incropera
,
F. D.
,
1987
, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. Model Formulation
,”
Int. J. Heat Mass Transfer
,
10
, pp.
2161
2170
.
24.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
Washington, DC
.
25.
Iberall
,
A. S.
,
1950
, “
Permeability of Glass Wool and Other Highly Porous Media
,”
J. Res. Natl. Bur. Stand.
,
45
(
5
), pp.
398
406
.
26.
Thevik
,
H. J.
, and
Mo
,
A.
,
1997
, “
The Influence of Micro-Scale Solute Diffusion and Dendrite Coarsening Upon Surface Macrosegregation
,”
Int. J. Heat Mass Transfer
,
40
(
9
), pp.
2055
2065
.
27.
Fezi
,
K.
,
Plotkowski
,
A.
, and
Krane
,
M. J. M.
,
2016
, “
Macrosegregation Modeling During Direct Chill Casting of Aluminum Alloy 7050
,”
Numer. Heat Transfer, Part A: Appl.
,
70
(
9
), pp.
939
963
.
28.
Krane
,
M. J. M.
, and
Incropera
,
F. P.
,
1995
, “
Analysis of the Effect of Shrinkage on Macrosegregation in Alloy Solidification
,”
Metall. Mater. Trans. A
,
26
(
9
), pp.
2329
2339
.
29.
Fezi
,
K.
, and
Krane
,
M. J. M.
,
2016
, “
Uncertainty Quantification in Modelling Equiaxed Alloy Solidification
,”
Int. J. Cast Met. Res.
,
30
(1), pp.
34
49
.
30.
Fezi
,
K.
,
Plotkowski
,
A.
, and
Krane
,
M. J. M.
,
2016
, “
A Metric for the Quantification of Macrosegregation During Alloy Solidification
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
2940
2951
.
31.
Fezi
,
K.
,
2016
, “
Modeling Transport Phenomena and Uncertainty Quantification in Solidification Processes
,”
Ph.D. dissertation
, Purdue University, West Lafayette, IN.
32.
Melo
,
M. L. N. M.
,
Rizzo
,
E. M. S.
, and
Santos
,
R. G.
,
2005
, “
Predicting Dendrite Arm Spacing and Their Effect on Microporosity Formation in Directionally Solidified Al–Cu Alloy
,”
J. Mater. Sci.
,
40
(
7
), pp.
1599
1609
.
You do not currently have access to this content.