Particulate fouling and particle deposition at elevated temperature are crucial issues in microchannel heat exchangers. In this work, a microfluidic system was designed to examine the hydrodynamic effects on the deposition of microparticles in a microchannel flow, which simulate particle deposits in microscale heat exchangers. The deposition rates of microparticles were measured in two typical types of flow, a steady flow and a pulsatile flow. Under a given elevated solution temperature and electrolyte concentration of the particle dispersion in the tested flow rate range, the dimensionless particle deposition rate (Sherwood number) was found to decrease with the Reynolds number of the steady flow and reach a plateau for the Reynolds number beyond 0.091. Based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, a mass transport model was developed with considering temperature dependence of the particle deposition at elevated temperatures. The modeling results can reasonably capture our experimental observations. Moreover, the experimental results of the pulsatile flow revealed that the particle deposition rate in the microchannel can be mitigated by increasing the frequency of pulsation within a low-frequency region. Our findings are expected to provide a better understanding of thermally driven particulate fouling as well as to provide useful information for design and operation of microchannel heat exchangers.

References

1.
Zhu
,
Y.
,
Antao
,
D. S.
,
Chu
,
K.-H.
,
Chen
,
S.
,
Hendricks
,
T. J.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2016
, “
Surface Structure Enhanced Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091501
.
2.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Enhanced Pool Boiling With Ethanol at Subatmospheric Pressures for Electronics Cooling
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111002
.
3.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2011
, “
Experimental and Numerical Investigation Into the Heat Transfer Study of Nanofluids in Microchannel
,”
ASME J. Heat Transfer
,
133
(
12
), p.
121701
.
4.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
,
2006
, “
High Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1046
1051
.
5.
Yan
,
Z. B.
,
Duan
,
F.
,
Wong
,
T. N.
,
Toh
,
K. C.
,
Choo
,
K. F.
,
Chan
,
P. K.
,
Chua
,
Y. S.
, and
Lee
,
L. W.
,
2013
, “
Large Area Impingement Spray Cooling From Multiple Normal and Inclined Spray Nozzles
,”
Heat Mass Transfer
,
49
(
7
), pp.
985
990
.
6.
Yan
,
Z. B.
,
Toh
,
K. C.
,
Duan
,
F.
,
Wong
,
T. N.
,
Choo
,
K. F.
,
Chan
,
P. K.
, and
Chua
,
Y. S.
,
2010
, “
Experimental Study of Impingement Spray Cooling for High Power Devices
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1225
1230
.
7.
Yan
,
Z. B.
,
Duan
,
F.
,
Wong
,
T. N.
,
Toh
,
K. C.
,
Choo
,
K. F.
,
Chan
,
P. K.
,
Chua
,
Y. S.
, and
Lee
,
L. W.
,
2010
, “
Large Area Spray Cooling by Inclined Nozzles for Electronic Board
,”
12th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 8–10, pp.
76
78
.
8.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
,
Lamaison
,
N.
, and
Thome
,
J. R.
,
2013
, “
Advances in Electronics Cooling
,”
Heat Transfer Eng.
,
34
(
5–6
), pp.
434
446
.
9.
Madhour
,
Y.
,
Olivier
,
J.
,
Costa-Patry
,
E.
,
Paredes
,
S.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Flow Boiling of R134a in a Multi-Microchannel Heat Sink With Hotspot Heaters for Energy-Efficient Microelectronic CPU Cooling Applications
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
6
), pp.
873
883
.
10.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
11.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
288
.
12.
Tuckerman
,
D. B.
,
Pease
,
R. F. W.
,
Guo
,
Z.
,
Hu
,
J. E.
,
Yildirim
,
O.
,
Deane
,
G.
, and
Wood
,
L.
,
2011
, “
Microchannel Heat Transfer: Early History, Commercial Applications, and Emerging Opportunities
,”
ASME
Paper No. ICNMM2011-58308.
13.
Unni
,
H. N.
, and
Yang
,
C.
,
2009
, “
Colloidal Particle Deposition From Electrokinetic Flow in a Microfluidic Channel
,”
Electrophoresis
,
30
(
5
), pp.
732
741
.
14.
Gu
,
Y.
, and
Li
,
D.
,
2002
, “
Deposition of Spherical Particles Onto Cylindrical Solid Surfaces—II: Experimental Studies
,”
J. Colloid Interface Sci.
,
248
(
2
), pp.
329
339
.
15.
Yang
,
C.
,
Dabros
,
T.
,
Li
,
D.
,
Czarnecki
,
J.
, and
Masliyah
,
J. H.
,
1998
, “
Kinetics of Particle Transport to a Solid Surface From an Impinging Jet Under Surface and External Force Fields
,”
J. Colloid Interface Sci.
,
208
(
1
), pp.
226
240
.
16.
Song
,
L.
, and
Elimelech
,
M.
,
1995
, “
Particle Deposition Onto a Permeable Surface in Laminar Flow
,”
J. Colloid Interface Sci.
,
173
(
1
), pp.
165
180
.
17.
Elimelech
,
M.
,
Gregory
,
J.
,
Jia
,
X.
, and
Williams
,
R. A.
,
1995
,
Particle Deposition & Aggregation: Measurement, Modelling and Simulation
,
Butterworth-Heinemann
,
Oxford, UK
.
18.
Peyghambarzadeh
,
S. M.
,
Vatani
,
A.
, and
Jamialahmadi
,
M.
,
2012
, “
Experimental Study of Micro-Particle Fouling Under Forced Convective Heat Transfer
,”
Braz. J. Chem. Eng.
,
29
(
4
), pp.
713
724
.
19.
Hwang
,
G.
,
Ahn
,
I. S.
,
Mhin
,
B. J.
, and
Kim
,
J. Y.
,
2012
, “
Adhesion of Nano-Sized Particles to the Surface of Bacteria: Mechanistic Study With the Extended DLVO Theory
,”
Colloids Surf., B
,
97
, pp.
138
144
.
20.
Chowdhury
,
I.
, and
Walker
,
S. L.
,
2012
, “
Deposition Mechanisms of TiO2 Nanoparticles in a Parallel Plate System
,”
J. Colloid Interface Sci.
,
369
(
1
), pp.
16
22
.
21.
Chen
,
G.
,
Hong
,
Y.
, and
Walker
,
S. L.
,
2010
, “
Colloidal and Bacterial Deposition: Role of Gravity
,”
Langmuir
,
26
(
1
), pp.
314
319
.
22.
Perry
,
J.
, and
Kandlikar
,
S.
,
2008
, “
Fouling and Its Mitigation in Silicon Microchannels Used for IC Chip Cooling
,”
Microfluid. Nanofluid.
,
5
(
3
), pp.
357
371
.
23.
Nazemifard
,
N.
,
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
, “
Particle Deposition Onto Micropatterned Charge Heterogeneous Substrates: Trajectory Analysis
,”
J. Colloid Interface Sci.
,
293
(
1
), pp.
1
15
.
24.
Yiantsios
,
S. G.
, and
Karabelas
,
A. J.
,
2003
, “
Deposition of Micron-Sized Particles on Flat Surfaces: Effects of Hydrodynamic and Physicochemical Conditions on Particle Attachment Efficiency
,”
Chem. Eng. Sci.
,
58
(
14
), pp.
3105
3113
.
25.
Yiantsios
,
S. G.
, and
Karabelas
,
A. J.
,
1998
, “
The Effect of Gravity on the Deposition of Micron-Sized Particles on Smooth Surfaces
,”
Int. J. Multiphase Flow
,
24
(
2
), pp.
283
293
.
26.
Yiantsios
,
S. G.
, and
Karabelas
,
A. J.
,
1995
, “
Detachment of Spherical Microparticles Adhering on Flat Surfaces by Hydrodynamic Forces
,”
J. Colloid Interface Sci.
,
176
(
1
), pp.
74
85
.
27.
Yan
,
Z.
,
Huang
,
X.
, and
Yang
,
C.
,
2016
, “
Particulate Fouling and Mitigation Approach in Microchannel Heat Exchanger
,”
ASME
Paper No. MNHMT2016-6628.
28.
Yan
,
Z.
,
Huang
,
X.
, and
Yang
,
C.
,
2015
, “
Deposition of Colloidal Particles in a Microchannel at Elevated Temperatures
,”
Microfluid. Nanofluid.
,
18
(
3
), pp.
403
414
.
29.
Adamczyk
,
Z.
,
Dabros'
,
T.
,
Czarnecki
,
J.
, and
Van De Ven
,
T. G. M.
,
1983
, “
Particle Transfer to Solid Surfaces
,”
Adv. Colloid Interface Sci.
,
19
(
3
), pp.
183
252
.
30.
Unni
,
H. N.
,
2007
, “
Transport and Deposition of Colloidal Particles in MicroChannel Flow
,”
Ph.D. thesis
, Nanyang Technological University, Singapore.https://repository.ntu.edu.sg/handle/10356/36143
31.
Hogg
,
R.
,
Healy
,
T. W.
, and
Fuerstenau
,
D. W.
,
1966
, “
Mutual Coagulation of Colloidal Dispersions
,”
Trans. Faraday Soc.
,
62
(
615
), pp.
1638
1651
.
32.
Bendersky
,
M.
, and
Davis
,
J. M.
,
2011
, “
DLVO Interaction of Colloidal Particles With Topographically and Chemically Heterogeneous Surfaces
,”
J. Colloid Interface Sci.
,
353
(
1
), pp.
87
97
.
33.
Bhattacharjee
,
S.
,
Chen
,
J. Y.
, and
Elimelech
,
M.
,
2000
, “
DLVO Interaction Energy Between Spheroidal Particles and a Flat Surface
,”
Colloids Surf., A
,
165
(
1–3
), pp.
143
156
.
34.
Martines
,
E.
,
Csaderova
,
L.
,
Morgan
,
H.
,
Curtis
,
A. S. G.
, and
Riehle
,
M. O.
,
2008
, “
DLVO Interaction Energy Between a Sphere and a Nano-Patterned Plate
,”
Colloids Surf., A
,
318
(
1–3
), pp.
45
52
.
35.
Gu
,
Y.
, and
Li
,
D.
,
2002
, “
Deposition of Spherical Particles Onto Cylindrical Solid Surfaces—I: Numerical Simulations
,”
J. Colloid Interface Sci.
,
248
(
2
), pp.
315
328
.
36.
Suzuki
,
A.
,
Ho
,
N. F. H.
, and
Higuchi
,
W. I.
,
1969
, “
Predictions of the Particle Size Distribution Changes in Emulsions and Suspensions by Digital Computation
,”
J. Colloid Interface Sci.
,
29
(
3
), pp.
552
564
.
37.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
38.
Maidment
,
D. R.
,
1993
,
Handbook of Hydrology
,
McGraw-Hill
,
New York
.
39.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid. Mech.
,
22
(
2
), pp.
385
400
.
40.
Hall
,
D.
,
1988
, “
Measurements of the Mean Force on a Particle Near a Boundary in Turbulent Flow
,”
J. Fluid. Mech.
,
187
, pp.
451
466
.
41.
Mollinger
,
A. M.
, and
Nieuwstadt
,
F. T. M.
,
1996
, “
Measurement of the Lift Force on a Particle Fixed to the Wall in the Viscous Sublayer of a Fully Developed Turbulent Boundary Layer
,”
J. Fluid. Mech.
,
316
, pp.
285
306
.
42.
Leighton
,
D.
, and
Acrivos
,
A.
,
1985
, “
The Lift on a Small Sphere Touching a Plane in the Presence of a Simple Shear Flow
,”
ZAMP
,
36
(
1
), pp.
174
178
.
43.
Yang
,
J.
,
Bos
,
R.
,
Poortinga
,
A.
,
Wit
,
P. J.
,
Belder
,
G. F.
, and
Busscher
,
H. J.
,
1999
, “
Comparison of Particle Deposition in a Parallel Plate and a Stagnation Point Flow Chamber
,”
Langmuir
,
15
(
13
), pp.
4671
4677
.
44.
Jin
,
C.
,
Glawdel
,
T.
,
Ren
,
C. L.
, and
Emelko
,
M. B.
,
2015
, “
Non-Linear, Non-Monotonic Effect of Nano-Scale Roughness on Particle Deposition in Absence of an Energy Barrier: Experiments and Modeling
,”
Sci. Rep.
,
5
(
1
), p.
17747
.
45.
Jin
,
C.
,
Ren
,
C. L.
, and
Emelko
,
M. B.
,
2016
, “
Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions
,”
Environ. Sci. Technol.
,
50
(
8
), pp.
4401
4412
.
46.
Wit
,
P. J.
,
Poortinga
,
A.
,
Noordmans
,
J.
,
van der Mei
,
H. C.
, and
Busscher
,
H. J.
,
1999
, “
Deposition of Polystyrene Particles in a Parallel Plate Flow Chamber Under Attractive and Repulsive Electrostatic Conditions
,”
Langmuir
,
15
(
8
), pp.
2620
2626
.
47.
Moschandreou
,
T. E.
,
Ellis
,
C. G.
, and
Goldman
,
D.
,
2010
, “
Mass Transfer in a Rigid Tube With Pulsatile Flow and Constant Wall Concentration
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081202
.
You do not currently have access to this content.