The recently confirmed violation of the no-slip boundary condition in the flow of small-molecule liquids through microchannels and nanochannels has technological implications such as friction reduction. However, for significant friction reduction at low cost, the microchannel wall needs to be chemically inhomogeneous. The direct fluid dynamic consequence of this requirement is a spatial variation in the local degree of liquid slippage. In this work, the pressure-driven flow in a channel with periodically patterned slippage on the channel walls is studied using a spectrally accurate semi-analytical approach based on Fourier decomposition. The method puts no restrictions on the pitch (or wavelength) and amplitude of the pattern. The predicted effective slip length in the limits of small pattern amplitude and thick channels is found to be consistent with previously published results. The effective degree of slippage decreases with the patterning amplitude. Finer microchannels and longer pattern wavelengths promote slippage.

References

1.
Navier
,
C.
,
1823
,
Mémoire sur les Lois du Mouvement des Fluids
, Vol.
6
,
Mémoires de l'Académie Royale des Sciences de l'Institut de France
,
Paris, France
, pp.
389
440
.
2.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
,
170
, pp.
231
256
.
3.
Tsien
,
H.-S.
,
1946
, “
Superaerodynamics, Mechanics of Rarefied Gases
,”
J. Aeronaut. Sci.
,
13
(
12
), pp.
653
664
.
4.
Cohen
,
Y.
, and
Metzner
,
A.
,
1985
, “
Apparent Slip Flow of Polymer Solutions
,”
J. Rheol.
,
29
(
1
), pp.
67
102
.
5.
Leal
,
L. G.
,
2007
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
,
Cambridge, UK
.
6.
Cottin-Bizonne
,
C.
,
Barrat
,
J.-L.
,
Bocquet
,
L.
, and
Charlaix
,
E.
,
2003
, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nat. Mater.
,
2
(
4
), pp.
237
240
.
7.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H.
,
2003
, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Nat. Mater.
,
2
(
4
), pp.
221
227
.
8.
Lauga
,
E.
,
Brenner
,
M.
, and
Stone
,
H. A.
,
2007
, “
Microfluidics: The no-Slip Boundary Condition
,”
Handbook of Experimental Fluid Mechanics
,
Springer
,
New York
, pp.
1219
1240
.
9.
Cao
,
B.-Y.
,
Sun
,
J.
,
Chen
,
M.
, and
Guo
,
Z.-Y.
,
2009
, “
Molecular Momentum Transport at Fluid-Solid Interfaces in Mems/Nems: A Review
,”
Int. J. Mol. Sci.
,
10
(
11
), pp.
4638
4706
.
10.
Stone
,
H.
,
Stroock
,
A.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.
11.
Choi
,
C.-H.
, and
Kim
,
C.-J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
(
6
), p.
066001
.
12.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
(
12
), p.
123601
.
13.
Maali
,
A.
,
Pan
,
Y.
,
Bhushan
,
B.
, and
Charlaix
,
E.
,
2012
, “
Hydrodynamic Drag-Force Measurement and Slip Length on Microstructured Surfaces
,”
Phys. Rev. E
,
85
(
6
), p.
066310
.
14.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.
15.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
(
1
), pp.
12
17
.
16.
Shelly
,
P.
, and
Ettles
,
C.
,
1972
, “
Effect of Transverse and Longitudinal Surface Waviness on the Operation of Journal Bearings
,”
J. Mech. Eng. Sci.
,
14
(
3
), pp.
168
172
.
17.
Dowson
,
D.
,
Priest
,
M.
,
Dalmaz
,
G.
, and
Lubrecht
,
A.
,
2003
,
Tribological Research and Design for Engineering Systems
, Elsevier, Amsterdam, The Netherlands.
18.
Warren
,
T.
,
Majumdar
,
A.
, and
Krajcinovic
,
D.
,
1996
, “
A Fractal Model for the Rigid-Perfectly Plastic Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
47
54
.
19.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Peterson
,
G. P.
,
2010
, “
Optimal Surface Fractal Dimension for Heat and Fluid Flow in Microchannels
,”
Appl. Phys. Lett.
,
97
(
8
), p.
084101
.
20.
Chen
,
Y.
, and
Zhang
,
C.
,
2014
, “
Role of Surface Roughness on Thermal Conductance at Liquid–Solid Interfaces
,”
Int. J. Heat Mass Transfer
,
78
, pp.
624
629
.
21.
Deng
,
Z.
,
Chen
,
Y.
, and
Shao
,
C.
,
2016
, “
Gas Flow Through Rough Microchannels in the Transition Flow Regime
,”
Phys. Rev. E
,
93
(
1
), p.
013128
.
22.
Zhang
,
C.
, and
Chen
,
Y.
,
2014
, “
Slip Behavior of Liquid Flow in Rough Nanochannels
,”
Chem. Eng. Process. Process Intensif.
,
85
, pp.
203
208
.
23.
Guo
,
L.
,
Chen
,
S.
, and
Robbins
,
M. O.
,
2016
, “
Effective Slip Boundary Conditions for Sinusoidally Corrugated Surfaces
,”
Phys. Rev. Fluids
,
1
(
7
), p.
074102
.
24.
Kunert
,
C.
, and
Harting
,
J.
,
2007
, “
Roughness Induced Boundary Slip in Microchannel Flows
,”
Phys. Rev. Lett.
,
99
(
17
), p.
176001
.
25.
Chaudhury
,
M. K.
, and
Whitesides
,
G. M.
,
1992
, “
How to Make Water Run Uphill
,”
Science
,
256
(
5063
), pp.
1539
1541
.
26.
Vinogradova
,
O. I.
, and
Belyaev
,
A. V.
,
2011
, “
Wetting, Roughness and Flow Boundary Conditions
,”
J. Phys. Condens. Matter
,
23
(
18
), p.
184104
.
27.
Choudhary
,
J. N.
,
Datta
,
S.
, and
Jain
,
S.
,
2015
, “
Effective Slip in Nanoscale Flows Through Thin Channels With Sinusoidal Patterns of Wall Wettability
,”
Microfluid. Nanofluid.
,
18
(
5–6
), pp.
931
942
.
28.
Asmolov
,
E. S.
,
Schmieschek
,
S.
,
Harting
,
J.
, and
Vinogradova
,
O. I.
,
2013
, “
Flow Past Superhydrophobic Surfaces With Cosine Variation in Local Slip Length
,”
Phys. Rev. E
,
87
(
2
), p.
023005
.
29.
Levine
,
S.
,
Marriott
,
J. R.
, and
Robinson
,
K.
,
1975
, “
Theory of Electrokinetic Flow in a Narrow Parallel-Plate Channel
,”
J. Chem. Soc. Faraday Trans.
2
,
71
, pp.
1
11
.
30.
Schmieschek
,
S.
,
Belyaev
,
A. V.
,
Harting
,
J.
, and
Vinogradova
,
O. I.
,
2012
, “
Tensorial Slip of Superhydrophobic Channels
,”
Phys. Rev. E
,
85
(
1
), p.
016324
.
31.
de Gennes
,
P.-G.
,
2002
, “
On Fluid/Wall Slippage
,”
Langmuir
,
18
(
9
), pp.
3413
3414
.
32.
Huang
,
D. M.
,
Sendner
,
C.
,
Horinek
,
D.
,
Netz
,
R. R.
, and
Bocquet
,
L.
,
2008
, “
Water Slippage Versus Contact Angle: A Quasiuniversal Relationship
,”
Phys. Rev. Lett.
,
101
(
22
), p.
226101
.
33.
Bazant
,
M. Z.
, and
Vinogradova
,
O. I.
,
2008
, “
Tensorial Hydrodynamic Slip
,”
J. Fluid Mech.
,
613
(
10
), pp.
125
134
.
34.
Asmolov
,
E. S.
, and
Vinogradova
,
O. I.
,
2012
, “
Effective Slip Boundary Conditions for Arbitrary One-Dimensional Surfaces
,”
J. Fluid Mech.
,
706
(
9
), pp.
108
117
.
35.
Philip
,
J.
,
1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
,
23
(
3
), pp.
353
372
.
36.
Lauga
,
E.
, and
Stone
,
H. A.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
(
7
), pp.
55
77
.
37.
Feuillebois
,
F. M. C.
,
Bazant
,
M. Z.
, and
Vinogradova
,
O. I.
,
2009
, “
Effective Slip Over Superhydrophobic Surfaces in Thin Channels
,”
Phys. Rev. Lett.
,
102
(
2
), p.
026001
.
38.
Hendy
,
S. C.
,
Jasperse
,
M.
, and
Burnell
,
J.
,
2005
, “
Effect of Patterned Slip on Micro- and Nanofluidic Flows
,”
Phys. Rev. E
,
72
(
1
), p.
016303
.
39.
Ghosh
,
U.
, and
Chakraborty
,
S.
,
2012
, “
Patterned-Wettability-Induced Alteration of Electro-Osmosis Over Charge-Modulated Surfaces in Narrow Confinements
,”
Phys. Rev. E
,
85
(
4
), p.
046304
.
40.
Asmolov
,
E. S.
,
Zhou
,
J.
,
Schmid
,
F.
, and
Vinogradova
,
O. I.
,
2013
, “
Effective Slip-Length Tensor for a Flow Over Weakly Slipping Stripes
,”
Phys. Rev. E
,
88
(
2
), p.
023004
.
41.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
,
1987
,
Spectral Methods in Fluid Dynamics (Scientific Computation)
,
Springer-Verlag
,
New York
.
42.
Kumar
,
A.
,
Datta
,
S.
, and
Kalyanasundaram
,
D.
,
2016
, “
Permeability and Effective Slip in Confined Flows Transverse to Wall Slippage Patterns
,”
Phys. Fluids
,
28
(
8
), p.
082002
.
43.
Murdock
,
J. A.
,
1999
,
Perturbations: Theory and Methods
, Vol.
27
,
SIAM
,
Philadelphia, PA
.
44.
Priezjev
,
N. V.
,
Darhuber
,
A. A.
, and
Troian
,
S. M.
,
2005
, “
Slip Behavior in Liquid Films on Surfaces of Patterned Wettability: Comparison Between Continuum and Molecular Dynamics Simulations
,”
Phys. Rev. E
,
71
(
4
), p.
041608
.
45.
Qian
,
T.
,
Wang
,
X.-P.
, and
Sheng
,
P.
,
2005
, “
Hydrodynamic Slip Boundary Condition at Chemically Patterned Surfaces: A Continuum Deduction From Molecular Dynamics
,”
Phys. Rev. E
,
72
(
2
), p.
022501
.
46.
Hyväluoma
,
J.
, and
Harting
,
J.
,
2008
, “
Slip Flow Over Structured Surfaces With Entrapped Microbubbles
,”
Phys. Rev. Lett.
,
100
(
24
), p.
246001
.
You do not currently have access to this content.