Heterogeneous nucleate boiling over a flat surface has been studied through complete numerical simulations. During the growth and departure of the vapor bubble, the interface is tracked following a coupled level-set and volume of fluid approach. A microlayer evaporation model similar to Sato and Niceno [“A depletable microlayer model for nucleate pool boiling,” J. Comput. Phys. 300, 20–52 (2015)] has been deployed in this investigation. A detailed study of the changes in microlayer structure as a result of different modes of boiling scenario has been performed. The departure diameter is found to increase with an increase in substrate superheat. The predicted departure diameter has been compared with the available experimental and analytical results. A power-law curve has been obtained for depicting the growth rate of bubble depending on the degree of superheat at the wall. The space–time averaged wall-heat flux at different values of superheat temperature of substrate is obtained. Bubble growth during subcooled boiling at a low and intermediate subcooled degree has been observed through direct numerical simulations. The variations in bubble dynamics after departure in saturated and subcooled liquid states have been compared.

References

1.
Judd
,
R.
,
1999
, “
The Role of Bubble Waiting Time in Steady Nucleate Boiling
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
852
855
.
2.
Kurihara
,
H.
, and
Myers
,
J.
,
1960
, “
The Effects of Superheat and Surface Roughness on Boiling Coefficients
,”
AIChE J.
,
6
(
1
), pp.
83
91
.
3.
Hsu
,
Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.
4.
Rohsenow
,
W. M.
,
1951
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,” MIT Division of Industrial Corporation, Cambridge, MA, Technical Report No. 5.
5.
Tien
,
C.
,
1962
, “
A Hydrodynamic Model for Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
5
(
6
), pp.
533
540
.
6.
Zuber
,
N.
,
1963
, “
Nucleate Boiling. the Region of Isolated Bubbles and the Similarity With Natural Convection
,”
Int. J. Heat Mass Transfer
,
6
(
1
), pp.
53
78
.
7.
Lienhard
,
J.
,
1963
, “
A Semi-Rational Nucleate Boiling Heat Flux Correlation
,”
Int. J. Heat Mass Transfer
,
6
(
3
), pp.
215
219
.
8.
Forster
,
H.
, and
Zuber
,
N.
,
1955
, “
Dynamics of Vapor Bubbles and Boiling Heat Transfer
,”
AIChE J.
,
1
(
4
), pp.
531
535
.
9.
Fritz
,
W.
,
1935
, “
Maximum Volume of Vapor Bubbles
,”
Phys. Z.
,
11
, pp.
379
384
.
10.
Cole
,
R.
,
1967
, “
Bubble Frequencies and Departure Volumes at Subatmospheric Pressures
,”
AIChE J.
,
13
(
4
), pp.
779
783
.
11.
Moore
,
F. D.
, and
Mesler
,
R. B.
,
1961
, “
The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water
,”
AIChE J.
,
7
(
4
), pp.
620
624
.
12.
Hendricks
,
R. C.
, and
Sharp
,
R. R.
,
1964
,
Initiation of Cooling Due to Bubble Growth on a Heating Surface
,
National Aeronautics and Space Administration
, Washington, DC.
13.
Sharp
,
R. R.
,
1964
,
The Nature of Liquid Film Evaporation During Nucleate Boiling
,
National Aeronautics and Space Administration
, Washington, DC.
14.
Jawurek
,
H.
,
1969
, “
Simultaneous Determination of Microlayer Geometry and Bubble Growth in Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
843IN1847
846IN2848
.
15.
Voutsinos
,
C.
, and
Judd
,
R.
,
1975
, “
Laser Interferometric Investigation of the Microlayer Evaporation Phenomenon
,”
ASME J. Heat Transfer
,
97
(
1
), pp.
88
92
.
16.
Fath
,
H.
, and
Judd
,
R.
,
1978
, “
Influence of System Pressure on Microlayer Evaporation Heat Transfer
,”
ASME J. Heat Transfer
,
100
(
1
), pp.
49
55
.
17.
Cooper
,
M.
, and
Lloyd
,
A.
,
1969
, “
The Microlayer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
895
913
.
18.
Yabuki
,
T.
, and
Nakabeppu
,
O.
,
2014
, “
Heat Transfer Mechanisms in Isolated Bubble Boiling of Water Observed With MEMS Sensor
,”
Int. J. Heat Mass Transfer
,
76
, pp.
286
297
.
19.
Utaka
,
Y.
,
Kashiwabara
,
Y.
, and
Ozaki
,
M.
,
2013
, “
Microlayer Structure in Nucleate Boiling of Water and Ethanol at Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
222
230
.
20.
Koffman
,
L.
, and
Plesset
,
M.
,
1983
, “
Experimental Observations of the Microlayer in Vapor Bubble Growth on a Heated Solid
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
625
632
.
21.
Mikic
,
B.
,
Rohsenow
,
W.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.
22.
Lien
,
Y.-C.
,
1969
, “
Bubble Growth Rates at Reduced Pressure
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/12532
23.
Liaw
,
S.-P.
, and
Dhir
,
V. K.
,
1989
, “
Void Fraction Measurements During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
731
738
.
24.
Wang
,
C.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
25.
Lay
,
J.
, and
Dhir
,
V. K.
,
1995
, “
Shape of a Vapor Stem During Nucleate Boiling of Saturated Liquids
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
394
394
.
26.
Wayner
,
P. C.
,
1999
, “
Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern Award Review
,”
AIChE J.
,
45
(
10
), pp.
2055
2068
.
27.
Sharma
,
A.
,
1993
, “
Relationship of Thin Film Stability and Morphology to Macroscopic Parameters of Wetting in the Apolar and Polar Systems
,”
Langmuir
,
9
(
3
), pp.
861
869
.
28.
Lee
,
R.
, and
Nydahl
,
J.
,
1989
, “
Numerical Calculation of Bubble Growth in Nucleate Boiling From Inception Through Departure
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
474
479
.
29.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.
30.
Son
,
G.
,
Ramanujapu
,
N.
, and
Dhir
,
V. K.
,
2002
, “
Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
51
62
.
31.
Mukherjee
,
A.
, and
Dhir
,
V. K.
,
2004
, “
Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1023
1039
.
32.
Yoon
,
H. Y.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2001
, “
Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
27
(
2
), pp.
277
298
.
33.
Das
,
A.
,
Das
,
P.
, and
Saha
,
P.
,
2006
, “
Heat Transfer During Pool Boiling Based on Evaporation From Micro and Macrolayer
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3487
3499
.
34.
Zhao
,
Y.-H.
,
Masuoka
,
T.
, and
Tsuruta
,
T.
,
2002
, “
Unified Theoretical Prediction of Fully Developed Nucleate Boiling and Critical Heat Flux Based on a Dynamic Microlayer Model
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3189
3197
.
35.
Kim
,
S. H.
,
Lee
,
G. C.
,
Kang
,
J. Y.
,
Moriyama
,
K.
,
Park
,
H. S.
, and
Kim
,
M. H.
,
2017
, “
The Role of Surface Energy in Heterogeneous Bubble Growth on Ideal Surface
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1901
1909
.
36.
Ramanujapu
,
N.
,
1999
, “
Study of Growth Rate, Departure Frequency and Shape of a Single Bubble During Saturated and Subcooled Nuclear Boiling
,” Ph.D. prospectus, University of California, Los Angeles, CA.
37.
Wu
,
J.
, and
Dhir
,
V. K.
,
2010
, “
Numerical Simulations of the Dynamics and Heat Transfer Associated With a Single Bubble in Subcooled Pool Boiling
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111501
.
38.
Bankoff
,
S.
, and
Mikesell
,
R.
,
1959
, “
Bubble Growth Rates in Highly Subcooled Nucleate Boiling
,”
Chem. Eng. Prog.
,
29
, pp. 95–102.
39.
Robin
,
T. T.
, and
Snyder
,
N. W.
,
1970
, “
Bubble Dynamics in Subcooled Nucleate Boiling Based on the Mass Transfer Mechanism
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
305
318
.
40.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1978
, “
The Contribution of Latent Heat Transport in Subcooled Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
21
(
6
), pp.
725
734
.
41.
Snyder
,
N.
, and
Robin
,
T.
,
1969
, “
Mass-Transfer Model in Subcooled Nucleate Boiling
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
404
411
.
42.
Gunther
,
F. C.
,
1951
, “
Photographic Study of Surface-Boiling Heat Transfer to Water With Forced Convection
,”
ASME J. Heat Transfer
,
73
, pp.
115
123
.
43.
Ibrahim
,
E.
, and
Judd
,
R.
,
1985
, “
An Experimental Investigation of the Effect of Subcooling on Bubble Growth and Waiting Time in Nucleate Boiling
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
168
174
.
44.
Demiray
,
F.
, and
Kim
,
J.
,
2004
, “
Microscale Heat Transfer Measurements During Pool Boiling of Fc-72: Effect of Subcooling
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3257
3268
.
45.
Marek
,
R.
, and
Straub
,
J.
,
2001
, “
The Origin of Thermocapillary Convection in Subcooled Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
44
(
3
), pp.
619
632
.
46.
Goel
,
P.
,
Nayak
,
A. K.
,
Kulkarni
,
P. P.
, and
Joshi
,
J. B.
,
2017
, “
Experimental Study on Bubble Departure Characteristics in Subcooled Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
89
, pp.
163
176
.
47.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.
48.
Agarwal
,
D. K.
,
Welch
,
S. W. J.
,
Biswas
,
G.
, and
Durst
,
F.
,
2004
, “
Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variant of the VOF Method
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
329
338
.
49.
Gerlach
,
D.
,
Tomar
,
G.
,
Biswas
,
G.
, and
Durst
,
F.
,
2006
, “
Comparison of Volume-of-Fluid Methods for Surface Tension-Dominant Two-Phase Flows
,”
Int. J. Heat Mass Transf.
,
49
(
3–4
), pp.
740
754
.
50.
Tomar
,
G.
,
Biswas
,
G.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2005
, “
Numerical Simulation of Bubble Growth in Film Boiling Using a Coupled Level-Set and Volume-of-Fluid Method
,”
Phys. Fluids
,
17
(
11
), p.
112103
.
51.
Welch
,
S. W. J.
, and
Biswas
,
G.
,
2007
, “
Direct Simulation of Film Boiling Including Electrohydrodynamic Forces
,”
Phys. Fluids
,
19
(
1
), p.
012106
.
52.
Tomar
,
G.
,
Biswas
,
G.
,
Sharma
,
A.
, and
Welch
,
S. W. J.
,
2008
, “
Multimode Analysis of Bubble Growth in Saturated Film Boiling
,”
Phys. Fluids
,
20
(
9
), p.
092101
.
53.
Hens
,
A.
,
Biswas
,
G.
, and
De
,
S.
,
2014
, “
Analysis of Interfacial Instability and Multimode Bubble Formation in Saturated Boiling Using Coupled Level Set and Volume-of-Fluid Approach
,”
Phys. Fluids
,
26
(
1
), p.
012105
.
54.
Pandey
,
V.
,
Biswas
,
G.
, and
Dalal
,
A.
,
2016
, “
Effect of Superheat and Electric Field on Saturated Film Boiling
,”
Phys. Fluids
,
28
(
5
), p.
052102
.
55.
Pandey
,
V.
,
Biswas
,
G.
, and
Dalal
,
A.
,
2017
, “
Saturated Film Boiling at Various Gravity Levels Under the Influence of Electrohydrodynamic Forces
,”
Phys. Fluids
,
29
(
3
), p.
032104
.
56.
Chakraborty
,
I.
,
Ray
,
B.
,
Biswas
,
G.
,
Durst
,
F.
,
Sharma
,
A.
, and
Ghoshdastidar
,
P.
,
2009
, “
Computational Investigation on Bubble Detachment From Submerged Orifice in Quiescent Liquid Under Normal and Reduced Gravity
,”
Phys. Fluids
,
21
(
6
), p.
062103
.
57.
Deka
,
H.
,
Ray
,
B.
,
Biswas
,
G.
,
Dalal
,
A.
,
Tsai
,
P.-H.
, and
Wang
,
A.-B.
,
2017
, “
The Regime of Large Bubble Entrapment During a Single Drop Impact on a Liquid Pool
,”
Phys. Fluids
,
29
(
9
), p.
092101
.
58.
Ray
,
B.
,
Biswas
,
G.
, and
Sharma
,
A.
,
2015
, “
Regimes During Liquid Drop Impact on a Liquid Pool
,”
J. Fluid Mech.
,
768
, pp.
492
523
.
59.
Sato
,
Y.
, and
Niceno
,
B.
,
2015
, “
A Depletable Micro-Layer Model for Nucleate Pool Boiling
,”
J. Comput. Phys.
,
300
, pp.
20
52
.
60.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1980
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
61.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
62.
Puckett
,
E. G.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Marcus
,
D. L.
, and
Rider
,
W. J.
,
1997
, “
A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows
,”
J. Comput. Phys.
,
130
(
2
), pp.
269
282
.
63.
Center for Applied Science Computing
,
2006
, “
Hypre 2.0.0 User Manual
,” Lawrence Livermore National Laboratory, Livermore, CA.
64.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
65.
Raj
,
R.
,
Kunkelmann
,
C.
,
Stephan
,
P.
,
Plawsky
,
J.
, and
Kim
,
J.
,
2012
, “
Contact Line Behavior for a Highly Wetting Fluid Under Superheated Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2664
2675
.
66.
Siegel
,
R.
, and
Keshock
,
E. G.
,
1964
, “
Effects of Reduced Gravity on Nucleate Boiling Bubble Dynamics in Saturated Water
,”
AIChE J.
,
10
(
4
), pp.
509
517
.
You do not currently have access to this content.