Microrib is a very promising heat transfer enhancement method for the design of scramjet regenerative cooling channels. In this paper, a three-dimensional numerical model has been built and validated to parametrically investigate the thermal behavior of transcritical n-Decane in mini cooling channels with microribs under near critical pressure. The results have shown that the height and pitch of microrib perform a nonmonotonic effect on the convective heat transfer coefficient of n-Decane inside the cooling channel and the optimal microrib parameters stay at low values due to dramatic changes of coolant thermophysical properties in the near critical region. Due to severe thermal stratification and near critical conditions, there will be a significant recirculation zone in vertical direction near microrib, and its interaction with the strong secondary flow in axial direction caused by limited channel width of mini-channel will largely enhance the local convective heat transfer and its downstream region. Besides, the dramatically changing thermophysical properties of n-Decane will lead to a locally remarkable heat transfer enhancement phenomenon similar to impingement cooling at the front edge of microribs.

References

1.
Huzel
,
D. K.
, and
Huang
,
D. H.
,
1992
, “
Modern Engineering for Design of Liquid-Propellant Rocket Engines
,”
Progress in Astronautics and Aeronautics
, Vol.
147
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
2.
Harper
,
B.
,
Merkle
,
C. L.
,
Li
,
D.
, and
Sankaran
,
V.
,
2004
, “
Analysis of Regen Cooling in Rocket Combustors
,”
52nd JANNAF Joint Propulsion Meeting
, Las Vegas, NV, May 10–14.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040075891.pdf
3.
Coulbert
,
C. D.
,
1964
, “
Selecting Cooling Techniques for Liquid Rockets for Spacecraft
,”
J. Spacecr. Rockets
,
1
(
2
), pp.
129
139
.
4.
Zhong
,
F.
,
Fan
,
X.
,
Yu
,
G.
,
Li
,
J.
, and
Sung
,
C. J.
,
2011
, “
Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
25
(
3
), pp.
1226
1232
.
5.
Zhang
,
S.
,
Qin
,
J.
,
Xie
,
K.
,
Feng
,
Y.
, and
Bao
,
W.
,
2015
, “
Thermal Behavior Inside Scramjet Cooling Channels at Different Channel Aspect Ratios
,”
J. Propul. Power
,
32
(
1
), pp.
57
70
.
6.
Rau
,
G.
,
Çakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
,
1998
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
368
375
.
7.
Nine
,
M. J.
,
Munkhbayar
,
B.
,
Chung
,
H.
, and
Jeong
,
H.
,
2014
, “
Effects of Macro and Micro Roughness in Forced Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
77
84
.
8.
Shukla
,
A. K.
, and
Dewan
,
A.
,
2016
, “
Computational Study on Effects of Rib Height and Thickness on Heat Transfer Enhancement in a Rib Roughened Square Channel
,”
Sādhanā
,
41
(
6
), pp.
667
678
.
9.
Yeom
,
T.
,
Simon
,
T.
,
Zhang
,
T.
,
Zhang
,
M.
,
North
,
M.
, and
Cui
,
T.
,
2016
, “
Enhanced Heat Transfer of Heat Sink Channels With Micro Pin Fin Roughened Walls
,”
Int. J. Heat Mass Transfer
,
92
, pp.
617
627
.
10.
Hasan
,
M. I.
,
2014
, “
Investigation of Flow and Heat Transfer Characteristics in Micro Pin Fin Heat Sink With Nanofluid
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
598
607
.
11.
Xu
,
K.
,
Tang
,
L.
, and
Meng
,
H.
,
2015
, “
Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes
,”
Int. J. Heat Mass Transfer
,
84
, pp.
346
358
.
12.
Xu
,
K.
, and
Meng
,
H.
,
2016
, “
Numerical Study of Fluid Flows and Heat Transfer of Aviation Kerosene With Consideration of Fuel Pyrolysis and Surface Coking at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
95
, pp.
806
814
.
13.
Sunden
,
B. A.
,
Wu
,
Z.
, and
Huang
,
D.
,
2016
, “
Comparison of Heat Transfer Characteristics of Aviation Kerosene Flowing in Smooth and Enhanced Mini Tubes at Supercritical Pressures
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3/4
), pp.
1289
1308
.
14.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2407
2430
.
15.
Ackerman
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
490
497
.
16.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1968
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
67
76
.
17.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Influences Buoyancy Heat Transfer to Fluids Flowing Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Bundles
, Vol. 2, pp.
613
640
.
18.
Hiroaki
,
T.
,
Ayao
,
T.
,
Masaru
,
H.
, and Nuchi, N.,
1973
, “
Effects of Buoyancy and of Acceleration Owing to Thermal Expansion on Forced Turbulent Convection in Vertical Circular Tubes-Criteria of the Effects, Velocity and Temperature Profiles, and Reverse Transition From Turbulent to Laminar Flow
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1267
1288
.
19.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2014
, “
A New Analysis of Heat Transfer Deterioration on Basis of Turbulent Viscosity Variations of Supercritical Fluids
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122503
.
20.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
Y.
, and
Zhang
,
W.
,
2013
, “
Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes
,”
ASME J. Heat Transfer
,
135
(
7
), p.
071703
.
21.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
22.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
926
932
.
23.
Webb
,
R. L.
,
1980
, “
Air-Side Heat Transfer in Finned Tube Heat Exchangers
,”
Heat Transfer Eng.
,
1
(
3
), pp.
33
49
.
24.
Kumar
,
A.
,
2014
, “
Analysis of Heat Transfer and Fluid Flow in Different Shaped Roughness Elements on the Absorber Plate Solar Air Heater Duct
,”
Energy Procedia
,
57
, pp.
2102
2111
.
25.
Jaurker
,
A. R.
,
Saini
,
J. S.
, and
Gandhi
,
B. K.
,
2006
, “
Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness
,”
Sol. Energy
,
80
(
8
), pp.
895
907
.
26.
Hsieh
,
S. S.
,
Weng
,
C. J.
, and
Chiou
,
J. J.
,
1999
, “
Nucleate Pool Boiling on Ribbed Surfaces With MicroRoughness at Low and Moderate Heat Flux
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
376
385
.
27.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
28.
Scotti
,
S. J.
,
Martin
,
C. J.
, and
Lucas
,
S. H.
,
1988
, “
Active Cooling Design for Scramjet Engines Using Optimization Methods
,” National Aeronautics and Space Administration, Washington, DC, Technical Report, No.
TM-100581
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880011285.pdf
29.
Bao
,
W.
,
Zhang
,
S.
,
Qin
,
J.
,
Zhou
,
W.
, and
Xie
,
K.
,
2014
, “
Numerical Analysis of Flowing Cracked Hydrocarbon Fuel Inside Cooling Channels in View of Thermal Management
,”
Energy
,
67
, pp.
149
161
.
30.
Kim
,
S. K.
,
Choi
,
H. S.
, and
Kim
,
Y.
,
2012
, “
Thermodynamic Modeling Based on a Generalized Cubic Equation of State for Kerosene/Lox Rocket Combustion
,”
Combust. Flame
,
159
(
3
), pp.
1351
1365
.
31.
Wang
,
Y. Z.
,
Hua
,
Y. X.
, and
Meng
,
H.
,
2010
, “
Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
490
500
.
32.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
,
27
(4), pp. 671–679.
33.
Feng
,
Y.
,
Cao
,
J.
,
Li
,
X.
,
Zhang
,
S.
,
Qin
,
J.
, and
Rao
,
Y.
,
2017
, “
Flow and Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Mini Channels With Dimples
,”
ASME J. Heat Transfer
,
139
(12), p. 122401.
34.
Wang
,
L.
, and
Sundén
,
B.
,
2005
, “
Experimental Investigation of Local Heat Transfer in a Square Duct With Continuous and Truncated Ribs
,”
Exp. Heat Transfer
,
18
(
3
), pp.
179
197
.
35.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Sunden
,
B.
,
2014
, “
Flow Structure and Heat Transfer in a Square Passage With Offset Mid-Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
71
(
71
), pp.
44
56
.
36.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
J.
,
Wang
,
L.
,
Xie
,
G.
, and
Sundén
,
B.
,
2018
, “
Heat Transfer Enhancement and Turbulent Flow in a High Aspect Ratio Channel (4:1) With Micro-Ribs of Various Truncation Types and Arrangements
,”
Int. J. Therm. Sci.
,
123
, pp.
99
116
.
37.
Tang
,
X. Y.
, and
Zhu
,
D. S.
,
2013
, “
Flow Structure and Heat Transfer in a Narrow Rectangular Channel With Different Discrete Micro-Rib Arrays
,”
Chem. Eng. Process. Process Intensif.
,
69
(
7
), pp.
1
14
.
38.
Jiang
,
Y.
,
Feng
,
Y.
,
Zhang
,
S.
,
Qin
,
J.
, and
Bao
,
W.
,
2016
, “
Numerical Heat Transfer Analysis of Transcritical Hydrocarbon Fuel Flow in a Tube Partially Filled With Porous Media
,”
Open Phys.
,
14
(
1
), pp.
659
667
.
39.
Zhu
,
Y.
,
Liu
,
B.
, and
Jiang
,
P.
,
2013
, “
Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube
,”
Energy Fuels
,
28
(
1
), pp.
2187
2193
.
40.
Urbano
,
A.
, and
Nasuti
,
F.
,
2013
, “
Onset of Heat Transfer Deterioration in Supercritical Methane Flow Channels
,”
J. Thermophys. Heat Transfer
,
27
(
2
), p.
298
.
41.
Pizzarelli
,
M.
,
Urbano
,
A.
, and
Nasuti
,
F.
,
2010
, “
Numerical Analysis of Deterioration in Heat Transfer to Near Critical Rocket Propellants
,”
Numer. Heat Transfer
,
57
(
5
), pp.
297
314
.
42.
Yan
,
J.
,
Liu
,
Z.
,
Bi
,
Q.
,
Guo
,
Y.
, and
Yang
,
Z.
,
2015
, “
Heat Transfer of Hydrocarbon Fuel Under Steady States and Pressure-Transient States
,”
J. Propul. Power
,
32
(
1
), pp.
1
8
.
43.
Watanabe
,
K.
, and
Takahashi
,
T.
,
2002
, “
LES Simulation and Experimental Measurement of Fully Developed Ribbed Channel Flow and Heat Transfer
,”
ASME
Paper No. GT2002-30203.
You do not currently have access to this content.