This work presents the development and analysis of constructal microchannel network architectures for heat dissipation. The network configurations are characterized by multiple flow ramifications and changes in length and hydraulic diameter scales through each ramification level. Architectures investigated experimentally in the past years have adopted constant scaling rules throughout their ramification levels. In this study, constructal theory inspires the design of network architectures with variable scaling rules and up to three ramification levels (N). As a result, it was verified that constructal networks allowed thermal resistance reduction of 15% (N = 2) and 42% (N = 3) for a micro heat sink at a characteristic operational regime. Architecture's selection criterion using performance curves is proposed and it was also demonstrated that the bifurcated network with diameter ratio according to Hess–Murray law is not appropriate for heat dissipation purposes in miniaturized devices.

References

1.
Bejan
,
A.
,
1996
, “
Street Network Theory of Organization in Nature
,”
J. Adv. Transp.
,
30
(
2
), pp.
85
107
.
2.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.
3.
Bejan
,
A.
,
1997
, “
Constructal Tree Network for Fluid Flow Between a Finite-Size Volume and One Source or Sink
,”
Rev. Gen. Therm.
,
36
(
8
), pp.
592
604
.
4.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1997
, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
(
5309
), pp.
122
126
.
5.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.
6.
Pence
,
D.
,
2003
, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
319
330
.
7.
Senn
,
S.
, and
Poulikakos
,
D.
,
2004
, “
Laminar Mixing, Heat Transfer and Pressure Drop in Tree-Like Microchannel Nets and Their Application for Thermal Management in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
130
(
1
), pp.
178
191
.
8.
Haller
,
D.
,
Woias
,
P.
, and
Kockmann
,
N.
,
2009
, “
Simulation and Experimental Investigation of Pressure Loss and Heat Transfer in Microchannel Networks Containing Bends and T-Junctions
,”
Int. J. Heat Mass Transfer
,
52
(
11
), pp.
2678
2689
.
9.
Revellin
,
R.
,
Thome
,
J. R.
,
Bejan
,
A.
, and
Bonjour
,
J.
,
2009
, “
Constructal Tree-Shaped Microchannel Networks for Maximizing the Saturated Critical Heat Flux
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
342
352
.
10.
Calame
,
J.
,
Park
,
D.
,
Bass
,
R.
,
Myers
,
R.
, and
Safier
,
P.
,
2009
, “
Investigation of Hierarchically Branched-Microchannel Coolers Fabricated by Deep Reactive Ion Etching for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
131
(
5
), p.
051401
.
11.
Wang
,
X. Q.
,
Xu
,
P.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2010
, “
Flow and Thermal Characteristics of Offset Branching Network
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
272
280
.
12.
Hart
,
R. A.
, and
Da Silva
,
A. K.
,
2011
, “
Experimental Thermal–Hydraulic Evaluation of Constructal Microfluidic Structures Under Fully Constrained Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
15
), pp.
3661
3671
.
13.
Yu
,
X. F.
,
Zhang
,
C. P.
,
Teng
,
J. T.
,
Huang
,
S. Y.
,
Jin
,
S. P.
,
Lian
,
Y. F.
,
Cheng
,
C. H.
,
Xu
,
T. T.
,
Chu
,
J. C.
,
Chang
,
Y. J.
,
Dang
,
T.
, and
Greif
,
R.
,
2012
, “
A Study on the Hydraulic and Thermal Characteristics in Fractal Tree-Like Microchannels by Numerical and Experimental Methods
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7499
7507
.
14.
Zhang
,
C. P.
,
Lian
,
Y. F.
,
Hsu
,
C. H.
,
Teng
,
J. T.
,
Liu
,
S.
,
Chang
,
Y. J.
, and
Greif
,
R.
,
2015
, “
Investigations of Thermal and Flow Behavior of Bifurcations and Bends in Fractal-Like Microchannel Networks: Secondary Flow and Recirculation Flow
,”
Int. J. Heat Mass Transfer
,
85
, pp.
723
731
.
15.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.
16.
Hong
,
F.
,
Cheng
,
P.
,
Ge
,
H.
, and
Joo
,
G. T.
,
2007
, “
Conjugate Heat Transfer in Fractal-Shaped Microchannel Network Heat Sink for Integrated Microelectronic Cooling Application
,”
Int. J. Heat Mass Transfer
,
50
(
25
), pp.
4986
4998
.
17.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Yang
,
Y.
,
2010
, “
Thermal and Hydrodynamic Characteristics of Constructal Tree-Shaped Minichannel Heat Sink
,”
AIChE J.
,
56
(
8
), pp.
2018
2029
.
18.
Pence
,
D.
,
2010
, “
The Simplicity of Fractal-Like Flow Networks for Effective Heat and Mass Transport
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
474
486
.
19.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
20.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
21.
Sharp
,
K.
, and
Adrian
,
R.
,
2004
, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
,
36
(
5
), pp.
741
747
.
22.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
23.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2005
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
ASME
Paper No. ICMM2005-75112.
24.
Zhang
,
C. P.
,
Lian
,
Y. F.
,
Yu
,
X. F.
,
Liu
,
W.
,
Teng
,
J. T.
,
Xu
,
T. T.
,
Hsu
,
C. H.
,
Chang
,
Y. J.
, and
Greif
,
R.
,
2013
, “
Numerical and Experimental Studies on Laminar Hydrodynamic and Thermal Characteristics in Fractal-Like Microchannel Networks—Part B: Investigations on the Performances of Pressure Drop and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
66
, pp.
939
947
.
25.
Wang
,
L.
,
Wu
,
W.
, and
Li
,
X.
,
2013
, “
Numerical and Experimental Investigation of Mixing Characteristics in the Constructal Tree-Shaped Microchannel
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1014
1023
.
26.
Hess
,
W.
,
1913
,
Das Prinzip des kleinsten Kraftverbrauches im dienste hämodynamischer Forschung
,
Veit & Comp
,
Leipzig, Germany
.
27.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work—I: the Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci.
,
12
(
3
), pp.
207
214
.
28.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
29.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
30.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3105
3118
.
31.
Sharp
,
K.
,
Adrian
,
R.
,
Santiago
,
J.
, and
Molho
,
J.
,
2005
, “
Liquid Flows in Microchannels
,”
MEMS: Introduction and Fundamentals
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
32.
White
,
F.
,
1991
,
Viscous Fluid Flow
(McGraw-Hill Series in Mechanical Engineering),
McGraw-Hill
,
New York
.
33.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
34.
Muzychka
,
Y.
, and
Yovanovich
,
M.
,
1998
, “
Modeling Nusselt Numbers for Thermally Developing Laminar Flow in Non-Circular Ducts
,”
AIAA
Paper No. 98-2586.
35.
Phillips
,
R.
,
1987
, “
Forced Convection, Liquid Cooled, Microchannel Heat Sinks
,”
M.S. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/14921
36.
Errera
,
M.
,
Frigo
,
A.
, and
Segundo
,
E.
,
2014
, “
The Emergence of the Constructal Element in Tree-Shaped Flow Organization
,”
Int. J. Heat Mass Transfer
,
78
(1), pp.
181
188
.
37.
Lugarini
,
A.
,
2016
, “
Microchannel Net Architectures for Electronics Cooling
,” Master's dissertation, Federal University of Technology—Paraná, Curitiba, Brazil.
38.
Lee
,
J.
,
Kim
,
Y.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2013
, “
Constructal Design of a Comb-Like Channel Network for Self-Healing and Self-Cooling
,”
Int. J. Heat Mass Transfer
,
66
, pp.
898
905
.
39.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17
), pp.
3060
3067
.
40.
Arpaci
,
V. S.
,
1966
,
Conduction Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
41.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2003
, “
Dendritic Heat Convection on a Disc
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4381
4391
.
42.
Bejan
,
A.
,
2013
, “
Technology Evolution, From the Constructal Law
,”
Advances in Heat Transfer
, Vol.
45
,
Academic Press
,
San Diego, CA
, pp.
183
207
.
43.
Bejan
,
A.
, and
Errera
,
M. R.
,
2015
, “
Technology Evolution, From the Constructal Law: Heat Transfer Designs
,”
Int. J. Energy Res.
,
39
(
7
), pp.
919
928
.
44.
Pepe
,
V. R.
,
Rocha
,
L. A.
, and
Miguel
,
A. F.
,
2017
, “
Optimal Branching Structure of Fluidic Networks With Permeable Walls
,”
BioMed Res. Int.
,
2017
, p.
5284816
.
You do not currently have access to this content.