Abstract

The focus of this paper is to study the effects of stagnation point flow and porous medium on ferrofluid flow over a variable thicked sheet. Heat transfer analysis is discussed by including thermal radiation. Suitable transformations are applied to convert partial differential equations to ordinary differential equations. Convergent results for series solutions are calculated. The impact of numerous parameters on velocity and temperature is displayed for series solutions. Graphical behavior for skin friction coefficient and Nusselt number is also analyzed. Numerical values of Nusselt number are tabulated depending upon various parameters

References

1.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Effect of a Rotating Cylinder in Forced Convection of Ferrofluid Over a Backward Facing Step
,”
Int. J. Heat Mass Transfer
, 71, pp.
142
148
.10.1016/j.ijheatmasstransfer.2013.12.042
2.
Abbas
,
Z.
, and
Sheikh
,
M.
,
2017
, “
Numerical Study of Homogeneous–Heterogeneous Reactions on Stagnation Point Flow of Ferrofluid With Non-Linear Slip Condition
,”
Chin. J. Chem. Eng.
,
25
(
1
), pp.
11
17
.10.1016/j.cjche.2016.05.019
3.
Sheikholeslami
,
M.
,
Rashidi
,
M. M.
, and
Ganji
,
D. D.
,
2015
, “
Effect of Non-Uniform Magnetic Field on Forced Convection Heat Transfer of Image–Water Nanofluid
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
299
312
.10.1016/j.cma.2015.06.010
4.
Ram
,
P.
, and
Sharma
,
K.
,
2011
, “
Revolving Ferrofluid Flow Under the Influence of MFD Viscosity and Porosity With Rotating Disk
,”
J. Electromagn. Anal. Appl.
,
3
(
9
), pp.
378
386
.10.4236/jemaa.2011.39060
5.
Sheikholeslami
,
M.
, and
Shehzad
,
S. A.
,
2017
, “
Thermal Radiation of Ferrofluid in Existence of Lorentz Forces Considering Variable Viscosity
,”
Int. J. Heat Mass Transfer
,
109
, pp.
82
92
.10.1016/j.ijheatmasstransfer.2017.01.096
6.
Zeeshan
,
A.
,
Majeed
,
A.
, and
Ellahi
,
R.
,
2016
, “
Effect of Magnetic Dipole on Viscous Ferro-Fluid Past a Stretching Surface With Thermal Radiation
,”
J. Mol. Liq.
,
215
, pp.
549
554
.10.1016/j.molliq.2015.12.110
7.
Hayat
,
T.
,
Qayyum
,
S.
,
Imtiaz
,
M.
,
Alzahrani
,
F.
, and
Alsaedi
,
A.
,
2016
, “
Partial Slip Effect in Flow of Magnetite Fe3O4 Nanoparticles Between Rotating Stretchable Disks
,”
J. Magn. Magn. Mater.
,
413
, pp.
39
48
.10.1016/j.jmmm.2016.04.025
8.
Majeed
,
A.
,
Zeeshan
,
A.
, and
Ellahi
,
R.
,
2016
, “
Unsteady Ferromagnetic Liquid Flow and Heat Transfer Analysis Over a Stretching Sheet With the Effect of Dipole and Prescribed Heat Flux
,”
J. Mol. Liq.
,
223
, pp.
528
533
.10.1016/j.molliq.2016.07.145
9.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Nanofluid Two Phase Model Analysis in Existence of Induced Magnetic Field
,”
Int. J. Heat Mass Transfer
,
107
, pp.
288
299
.10.1016/j.ijheatmasstransfer.2016.10.130
10.
Turkyilmazoglu
,
M.
,
2012
, “
Exact Analytical Solutions for Heat and Mass Transfer of MHD Slip Flow in Nanofluids
,”
Chem. Eng. Sci.
,
84
, pp.
182
187
.10.1016/j.ces.2012.08.029
11.
Rashidi
,
M. M.
,
Nasiri
,
M.
,
Khezerloo
,
M.
, and
Laraqi
,
N.
,
2016
, “
Numerical Investigation of Magnetic Field Effect on Mixed Convection Heat Transfer of Nanofluid in a Channel With Sinusoidal Walls
,”
J. Magn. Magn. Mater.
,
401
, pp.
159
168
.10.1016/j.jmmm.2015.10.034
12.
Sheremet
,
M. A.
,
Pop
,
I.
, and
Roşca
,
N. C.
,
2016
, “
Magnetic Field Effect on the Unsteady Natural Convection in a Wavy-Walled Cavity Filled With a Nanofluid: Buongiorno's Mathematical Model
,”
J. Taiwan Inst. Chem. Eng.
,
61
, pp.
211
222
.10.1016/j.jtice.2015.12.015
13.
Hayat
,
T.
,
Khan
,
M. I.
,
Waqas
,
M.
,
Alsaedi
,
A.
, and
Farooq
,
M.
,
2017
, “
Numerical Simulation for Melting Heat Transfer and Radiation Effects in Stagnation Point Flow of Carbon–Water Nanofluid
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
1011
1024
.10.1016/j.cma.2016.11.033
14.
Awais
,
M.
,
Malik
,
M. Y.
,
Bilal
,
S.
,
Salahuddin
,
T.
, and
Hussain
,
A.
,
2017
, “
Magnetohydrodynamic (MHD) Flow of Sisko Fluid Near the Axisymmetric Stagnation Point Towards a Stretching Cylinder
,”
Results Phys.
,
7
, pp.
49
56
.10.1016/j.rinp.2016.10.016
15.
Mabood
,
F.
,
Shafiq
,
A.
,
Hayat
,
T.
, and
Abelman
,
S.
,
2017
, “
Radiation Effects on Stagnation Point Flow With Melting Heat Transfer and Second Order Slip
,”
Results Phys.
,
7
, pp.
31
42
.10.1016/j.rinp.2016.11.051
16.
Turkyilmazoglu
,
M.
, and
Pop
,
I.
,
2013
, “
Exact Analytical Solutions for the Flow and Heat Transfer Near the Stagnation Point on a Stretching/Shrinking Sheet in a Jeffrey Fluid
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
82
88
.10.1016/j.ijheatmasstransfer.2012.10.006
17.
Jalilpour
,
B.
,
Jafarmadar
,
S.
,
Ganji
,
D. D.
,
Shotorban
,
A. B.
, and
Taghavifar
,
H.
,
2014
, “
Heat Generation/Absorption on MHD Stagnation Flow of Nanofluid Towards a Porous Stretching Sheet With Prescribed Surface Heat Flux
,”
J. Mol. Liq.
,
195
, pp.
194
204
.10.1016/j.molliq.2014.02.021
18.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Flow Near the Two-Dimensional Stagnation Point on an Infinite Permeable Wall With a Homogeneous–Heterogeneous Reaction
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3435
3443
.10.1016/j.cnsns.2009.12.022
19.
You
,
L. H.
,
Tang
,
Y. Y.
,
Zhang
,
J. J.
, and
Zheng
,
C. Y.
,
2000
, “
Numerical Analysis of Elastic-Plastic Rotating Disks With Arbitrary Variable Thickness and Density
,”
Int. J. Solids Struct.
,
37
(
52
), pp.
7809
7820
.10.1016/S0020-7683(99)00308-X
20.
Subhashini
,
S. V.
,
Sumathi
,
R.
, and
Pop
,
I.
,
2013
, “
Dual Solutions in a Thermal Diffusive Flow Over a Stretching Sheet With Variable Thickness
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
61
66
.10.1016/j.icheatmasstransfer.2013.09.007
21.
Farooq
,
M.
,
Anjum
,
A.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Melting Heat Transfer in the Flow Over a Variable Thicked Riga Plate With Homogeneous-Heterogeneous Reactions
,”
J. Mol. Liq.
,
224
, pp.
1341
1347
.10.1016/j.molliq.2016.10.123
22.
Bayat
,
M.
,
Rahimi
,
M.
,
Saleem
,
M.
,
Mohazzab
,
A. H.
,
Wudtke
,
I.
, and
Talebi
,
H.
,
2014
, “
One Dimensional Analysis for Magneto-Thermo-Mechanical Response in a Functionally Graded Annular Variable-Thickness Rotating Disk
,”
Appl. Math. Modell.
,
38
(
19–20
), pp.
4625
4639
.10.1016/j.apm.2014.03.008
23.
Wahed
,
M. S. A.
,
Elbashbeshy
,
E. M. A.
, and
Emam
,
T. G.
,
2015
, “
Flow and Heat Transfer Over a Moving Surface With Non-Linear Velocity and Variable Thickness in a Nanofluids in the Presence of Brownian Motion
,”
Can. J. Phys.
,
254
, pp.
49
62
.10.1016/j.amc.2014.12.087
24.
Xun
,
S.
,
Zhao
,
J.
,
Zheng
,
L.
,
Chen
,
X.
, and
Zhang
,
X.
,
2016
, “
Flow and Heat Transfer of Ostwald-De Waele Fluid Over a Variable Thickness Rotating Disk With Index Decreasing
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1214
1224
.10.1016/j.ijheatmasstransfer.2016.08.066
25.
Rashidi
,
M. M.
,
Pour
,
S. A. M.
, and
Abbasbandy
,
S.
,
2011
, “
Analytic Approximate Solutions for Heat Transfer of a Micropolar Fluid Through a Porous Medium With Radiation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
4
), pp.
1874
1889
.10.1016/j.cnsns.2010.08.016
26.
Hayat
,
T.
,
Imtiaz
,
M.
,
Alsaedi
,
A.
, and
Mansoor
,
R.
,
2014
, “
MHD Flow of Nanofluids Over an Exponentially Stretching Sheet in a Porous Medium With Convective Boundary Conditions
,”
Chin. Phys. B
,
23
(
5
), p.
054701
.10.1088/1674-1056/23/5/054701
27.
Hayat
,
T.
, and
Abbas
,
Z.
,
2008
, “
Heat Transfer Analysis on the MHD Flow of a Second Grade Fluid in a Channel With Porous Medium
,”
Chaos, Solitons Fractals
,
38
, pp.
556
567
.10.1016/j.chaos.2006.12.004
28.
Ellahi
,
R.
, and
Afzal
,
S.
,
2009
, “
Effects of Variable Viscosity in a Third Grade Fluid With Porous Medium: An Analytic Solution
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2056
2072
.10.1016/j.cnsns.2008.05.006
29.
Mabood
,
F.
,
Shateyi
,
S.
,
Rashidi
,
M. M.
,
Momoniat
,
E.
, and
Freidoonimehr
,
N.
,
2016
, “
MHD Stagnation Point Flow Heat and Mass Transfer of Nanofluids in Porous Medium With Radiation, Viscous Dissipation and Chemical Reaction
,”
Adv. Powder Technol.
,
27
(
2
), pp.
742
749
.10.1016/j.apt.2016.02.033
30.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
,
2016
, “
Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid With Nonlinear Thermal Radiation and Quartic Chemical Reaction Past an Upper Horizontal Surface of a Paraboloid of Revolution
,”
J. Mol. Liq.
,
221
, pp.
733
743
.10.1016/j.molliq.2016.06.047
31.
Rashidi
,
M. M.
,
Ganesh
,
N. V.
,
Hakeem
,
A. K. A.
, and
Ganga
,
B.
,
2014
, “
Buoyancy Effect on MHD Flow of Nanofluid Over a Stretching Sheet in the Presence of Thermal Radiation
,”
J. Mol. Liq.
,
198
, pp.
234
238
.10.1016/j.molliq.2014.06.037
32.
Hayat
,
T.
,
Imtiaz
,
M.
,
Alsaedi
,
A.
, and
Kutbi
,
M. A.
,
2015
, “
MHD Three-Dimensional Flow of Nanofluid With Velocity Slip and Nonlinear Thermal Radiation
,”
J. Magn. Magn. Mater.
,
396
, pp.
31
37
.10.1016/j.jmmm.2015.07.091
33.
Hayat
,
T.
,
Imtiaz
,
M.
,
Alsaedi
,
A.
, and
Ahmad
,
B.
,
2016
, “
Convective Flow of Carbon Nanotubes Between Rotating Stretchable Disks With Thermal Radiation Effects
,”
Int. J. Heat Mass Transfer
,
101
, pp.
948
957
.10.1016/j.ijheatmasstransfer.2016.05.114
34.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2011
, “
Predictor Homotopy Analysis Method and Its Application to Some Nonlinear Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
6
), pp.
2456
2468
.10.1016/j.cnsns.2010.09.027
35.
Abbasbandy
,
S.
,
Shivanian
,
E.
, and
Vajravelu
,
K.
,
2011
, “
Mathematical Properties of Image-Curve in the Frame Work of the Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4268
4275
.10.1016/j.cnsns.2011.03.031
36.
Abbasbandy
,
S.
, and
Shirzadi
,
A.
,
2011
, “
A New Application of the Homotopy Analysis Method: Solving the Sturm–Liouville Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
1
), pp.
112
126
.10.1016/j.cnsns.2010.04.004
37.
Ellahi
,
R.
,
Raza
,
M.
, and
Vafai
,
K.
,
2012
, “
Series Solutions of Non-Newtonian Nanofluids With Reynolds Model and Vogel's Model by Means of the Homotopy Analysis Method
,”
Math. Comput. Modell.
,
55
(
7–8
), pp.
1876
1891
.10.1016/j.mcm.2011.11.043
38.
Kumari
,
M.
,
Pop
,
I.
, and
Nath
,
G.
,
2010
, “
Transient MHD Stagnation Flow of a Non-Newtonian Fluid Due to Impulsive Motion From Rest
,”
Int. J. Non-Linear Mech.
,
45
(
5
), pp.
463
473
.10.1016/j.ijnonlinmec.2010.01.002
39.
Esmaeilpour
,
M.
, and
Ganj
,
D. D.
,
2010
, “
Solution of the Jeffery-Hamel Flow Problem by Optimal Homotopy Asymptotic Method
,”
Comput. Math. Appl.
,
59
(
11
), pp.
3405
3411
.10.1016/j.camwa.2010.03.024
40.
Imtiaz, M., Alsaedi, A., Shafiq, A.,
and Hayat
,
T.
,
2017
, “
Impact of Chemical Reaction on Third Grade Fluid Flow With Cattaneo-Christov Heat Flux
,”
J. Mol. Liq.
,
229
, pp.
501
507
.10.1016/j.molliq.2016.12.103
41.
Mushtaq
,
A.
,
Khan
,
J. A.
,
Mustafa
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Consequences of Convection-Radiation Interaction for Magnetite-Water Nanofluid Flow Due to a Moving Plate
,”
Therm. Sci.
, 22(1), pp.
443
451
.https://pdfs.semanticscholar.org/ec3e/b6c4181542a66004d25b36a378c8c08002fd.pdf
42.
Turkyilmazoglu
,
M.
,
2017
, “
Magnetohydrodynamics Two-Phase Dusty Fluid Flow and Heat Model Over Deforming Isothermal Surfaces
,”
Phys. Fluids
,
29
(
1
), p.
013302
.10.1063/1.4965926
43.
Turkyilmazoglu
,
M.
,
2015
, “
Anomalous Heat Transfer Enhancement by Slip Due to Nanofluids in Circular Concentric Pipes
,”
Int. J. Heat Mass Transfer
,
85
, pp.
609
614
.10.1016/j.ijheatmasstransfer.2015.02.015
44.
Turkyilmazoglu
,
M.
,
2015
, “
A Note on the Correspondence Between Certain Nanofluid Flows and Standard Fluid Flows
,”
ASME J. Heat Transfer
,
137
(
2
), p.
024501
.10.1115/1.4028807
45.
Turkyilmazoglu
,
M.
,
2018
, “
Convergence Accelerating in the Homotopy Analysis Method: A New Approach
,”
Adv. Appl. Math. Mech.
,
10
(
4
), pp.
925
947
.10.4208/aamm.OA-2017-0196
46.
Turkyilmazoglu
,
M.
,
2017
, “
Parametrized Adomian Decomposition Method With Optimum Convergence
,”
Trans. Modell. Comput. Simul.
,
27
(
4
), pp.
1
22
.
You do not currently have access to this content.