Abstract

Origami tessellations have been proposed as a mechanism for control of radiative heat transfer through the use of the cavity effect. This work explores the impact of a changing projected surface area and varying apparent radiative properties on the net radiative heat transfer of an accordion fold comprised of V-grooves. The net radiative heat transfer of an accordion tessellation is obtained by a thermal energy balance at the cavity openings with radiative properties of the cavities given as a function of various cavity parameters. Results of the analytical model are experimentally confirmed. An accordion tessellation, constructed of stainless-steel shim stock, is positioned to achieve a specified fold angle and placed in a vacuum environment while heated by Joule heating. A thermal camera records the apparent temperature of the cavity openings for various fold angles. Results are compared to apparent temperatures predicted with the analytical model. Analytically and experimentally obtained temperatures agree within 5% and all measurements fall within experimental uncertainty. For diffusely irradiated surfaces, the decrease in projected surface area dominates, causing a continuous decrease in net radiative heat transfer for a collapsing accordion fold. Highly reflective specular surfaces exposed to diffuse irradiation experience large turn-down ratios (7.5× reduction in heat transfer) in the small angle ranges. Specular surfaces exposed to collimated irradiation achieve a turn down ratio of 3.35 between V-groove angles of 120 deg and 150 deg. The approach outlined here may be extended to modeling the net radiative heat transfer for other origami tessellations.

References

1.
Gilmore
,
D. G.
,
2002
,
Spacecraft Thermal Control Handbook
,
The Aerospace Corporation
,
El Segundo, CA
.
2.
Karam
,
R. D.
,
1998
,
Satellite Thermal Control for System's Engineers
,
American Institute of Aeronautics and Astronautics
,
Cambridge, UK
.
3.
Grob
,
L. M.
, and
Swanson
,
T. D.
,
2000
, “
Parametric Study of Variable Emissivity Radiator Surfaces
,”
Space Technology and Applications International Forum
,
M. S.
El-Genck
, ed.,
American Institute of Physics
, Albuquerque, NM.
4.
Hengeveld
,
D. W.
,
Mathison
,
M. M.
,
Braun
,
J. E.
,
Groll
,
E. A.
, and
Williams
,
A. D.
,
2010
, “
Review of Modern Spacecraft Thermal Control Technologies
,”
HVACR Res.
,
16
(
2
), pp.
189
220
.
5.
Hale
,
J. S.
,
DeVries
,
M.
,
Dworak
,
B.
, and
Woollam
,
J. A.
,
1998
, “
Visible and Infrared Optical Constants of Electrochromic Materials for Emissivity Modulation Applications
,”
Thin Solid Films
,
313–314
, pp.
205
209
.
6.
Franke
,
E. B.
,
Trimble
,
C. L.
,
Hale
,
J. S.
,
Schubert
,
M.
, and
Woollam
,
J. A.
,
2000
, “
Infrared Switching Electrochromic Devices Based on Tungsten Oxide
,”
J. Appl. Phys.
,
88
(
10
), p.
5777
.
7.
Kislov
,
N.
,
2003
, “
All-Solid-State Electrochromic Variable Emittance Coatings Thermal Management Space
,”
AIP Conf. Proc.
,
654
, pp.
172
179
.
8.
Larsson
,
A.-L.
, and
Niklasson
,
G. A.
,
2004
, “
Infrared Emittance Modulation of All-Thin-Film Electrochromic Devices
,”
Mater. Lett.
,
58
(
20
), pp.
2517
2520
.
9.
Biter
,
W.
,
Hess
,
S.
,
Oh
,
S.
,
Douglas
,
D.
, and
Swanson
,
T.
,
2005
, “
Electrostatic Radiator for Satellite Thermal Control
,”
Aerospace Conference
, Big Sky, MT, Mar. 5–12, pp. 781–790.
10.
Demiryont
,
H.
,
Shannon
,
K. I.
, and
Ponnappan
,
R.
,
2006
, “
Electrochromic Devices for Satellite Thermal Control
,”
Space Technology and Applications International Forum
,
American Institute of Physics
,
Albuquerque, NM
, Feb. 12–16, pp. 64–73.
11.
Demiryont
,
H.
, and
Moorehead
,
D.
,
2009
, “
Electrochromic Emissivity Modulator for Spacecraft Thermal Management
,”
Sol. Energy Mater. Sol. Cells
,
93
(
12
), pp.
2075
2078
.
12.
Benkahoul
,
M.
,
Chaker
,
M.
,
Margot
,
J.
,
Haddad
,
E.
,
Kruzelecky
,
R.
,
Wong
,
B.
,
Jamroz
,
W.
, and
Poinas
,
P.
,
2011
, “
Thermochromic VO2 Film Deposited on Al With Tunable Thermal Emissivity for Space Applications
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3504
3508
.
13.
Voti
,
R. L.
,
Larciprete
,
M. C.
,
Leahu
,
G.
,
Sibilia
,
C.
, and
Bertolotti
,
M.
,
2012
, “
Optimization of Thermochromic VO2 Based Structures With Tunable Thermal Emissivity
,”
J. Appl. Phys.
,
112
(
3
), p.
034305
.
14.
Voti
,
R. L.
,
Leahu
,
G. L.
,
Larciprete
,
M. C.
,
Sibilia
,
C.
, and
Bertolotti
,
M.
,
2014
, “
Photothermal Characterization of Thermochromic Materials for Tunable Thermal Devices
,”
Int. J. Thermophys.
,
36
(
5–6
), pp.
1004
1015
.
15.
Hill
,
S. A.
,
Kostyk
,
C.
,
Moril
,
B.
,
Notardonato
,
W.
,
Rickman
,
S.
, and
Swanson
,
T.
,
2012
, “
NASA Technology Roadmaps, TA 14: Thermal Management Systems
,” National Aeronautics and Space Administration, Washington, DC, accessed Jan. 17, 2019, https://www.nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps_ta_14_thermal_management_final.pdf
16.
Blanc
,
M. J.
,
Mulford
,
R. B.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2016
, “
Infrared Visualization of the Cavity Effect Using Origami-Inspired Surfaces
,”
ASME J. Heat Transfer
,
138
(
2
), p.
020901
.
17.
Mulford
,
R. B.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2016
, “
Dynamic Control of Radiative Surface Properties With Origami-Inspired Design
,”
ASME J. Heat Transfer
,
138
(
3
), p.
032701
.
18.
Iverson
,
B. D.
,
Mulford
,
R. B.
,
Lee
,
E. T.
, and
Jones
,
M. R.
,
2018
, “
Adaptive Net Radiative Heat Transfer and Thermal Management With Origami-Structured Surfaces
,”
16th International Heat Transfer Conference, Heat and Mass Transfer Society of China
, Beijing, China, Aug. 10–15, Paper No. IHTC16-23600.
19.
Sparrow
,
E. M.
, and
Albers
,
L. U.
,
1960
, “
Apparent Emissivity and Heat Transfer in a Long Cylindrical Hole
,”
ASME J. Heat Transfer
,
82
(
3
), pp.
253
255
.
20.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Absorption of Thermal Radiation in a V-Groove Cavity
,”
Int. J. Heat Mass Transfer
,
5
(
11
), pp.
1111
1115
.
21.
Sparrow
,
E. M.
,
1965
, “
Radiant Emission, Absorption, and Transmission Characteristics of Cavities and Passages
,” National Aeronautics and Space Administration, Washington, DC, Report No.
55
.https://ntrs.nasa.gov/search.jsp?R=19650017263
22.
Prokhorov
,
A. V.
,
Hanssen
,
L. M.
, and
Mekhontsev
,
S. N.
,
2009
, “
Calculation of the Radiation Characteristics of Blackbody Radiation Sources
,”
Exp. Methods Phys. Sci.
,
42
, pp.
181
240
.
23.
Mulford
,
R. B.
,
Collins
,
N. S.
,
Farnsworth
,
M. S.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2018
, “
Total Hemispherical Apparent Radiative Properties of the Infinite V-Groove With Specular Reflection
,”
Int. J. Heat Mass Transfer
,
124
, pp.
168
176
.
24.
Mulford
,
R. B.
,
Collins
,
N. S.
,
Farnsworth
,
M. S.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2018
, “
Total Hemispherical Apparent Radiative Properties of the Infinite V-Groove With Diffuse Reflection
,”
J. Thermophys. Heat Transfer
,
32
(
4
), pp.
1108
1112
.
25.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.
26.
Daws
,
L. F.
,
1954
, “
The Emissivity of a Groove
,”
Br. J. Appl. Phys.
,
5
(
5
), pp.
182
187
.
27.
Ohwada
,
Y.
,
1988
, “
Mathematical Proof of an Extended Kirchhoff Law for a Cavity Having Direction-Dependent Characteristics
,”
J. Opt. Soc. Am.
,
5
(
1
), pp.
141
145
.
28.
Modest
,
M. F.
,
2013
, “
Enclosures With Partially-Specular Surfaces
,” Radiative Heat Transfer,
Academic Press
,
London
, pp.
202
213
.
29.
Guy
,
W. W.
, and
Ellis
,
W. E.
,
1963
, “Vacuum Chamber Heat Transmission Analysis,”
National Aeronautics and Space Administration
,
Houston, TX
, Report No.
NASA-TM-X-65036
.https://ntrs.nasa.gov/search.jsp?R=19700026387
30.
ASTM
,
2014
, “
Measuring and Compensating for Transmittance of an Attenuating Medium Using Infrared Imaging Radiometers
,” ASTM, West Conshohocken, PA, Standard No. E1897-14.
31.
Sparrow
,
E. M.
,
Gregg
,
J. L.
,
Svel
,
J. V.
, and
Manos
,
P.
,
1961
, “
Analysis, Results and Interpretation for Radiation Between Some Simply-Arranged Gray Surfaces
,”
ASME J. Heat Transfer
,
83
(
2
), pp.
207
214
.
32.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
Wiley
, Hoboken, NJ.
33.
Kopp
,
G.
, and
Lean
,
J. L.
,
2011
, “
A New, Lower Value of Total Solar Irradiance: Evidence and Climate Significance
,”
Geophys. Res. Lett.
,
38
(
1
), p.
L01706
.
You do not currently have access to this content.