Abstract

Experimental investigations of the flows inside helically coiled pipe are difficult and may also be expensive, particularly for small diameters. Computational fluid dynamics (CFD) packages, which can easily construct the geometry and change the dimensions with 100% of accuracy, provide an alternative solution for the experimental difficulties and uncertainties. Therefore, a CFD study was conducted to analyze the flow structure and the effect of varying the coil pitch on the coil friction factor, through utilizing different models' configurations. Two coils were tested, all of them sharing the same pipe and coil diameter: 0.005 m and 0.04 m, respectively. Pitch variations began with 0.01 and 0.05 m for the first and second model, respectively. In this study, the velocity was analyzed, and the effects of this reduction on coil friction factor were also examined using laminar flow. The results were validated by Ito's equation for the laminar flow.

References

References
1.
Cioncolini
,
A.
, and
Santini
,
L.
,
2006
, “
An Experimental Investigation Regarding the Laminar to Turbulent Flow Transition in Helically Coiled Pipes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
367
380
.10.1016/j.expthermflusci.2005.08.005
2.
Ito
,
H.
,
1987
, “
Flow in Curved Pipes
,”
JSME Int. J.
,
30
(
262
), pp.
543
552
.10.1299/jsme1987.30.543
3.
De Amicis
,
J.
,
Cammi
,
A.
,
Colombo
,
L. P.
,
Colombo
,
M.
, and
Ricotti
,
M. E.
,
2014
, “
Experimental and Numerical Study of the Laminar Flow in Helically Coiled Pipes
,”
Prog. Nucl. Energy
,
76
, pp.
206
205
.10.1016/j.pnucene.2014.05.0
4.
Austen
,
D. S.
, and
Soliman
,
H. M.
,
1988
, “
Laminar Flow and Heat Transfer in Helically Coiled Tubes With Substantial Pitch
,”
Exp. Therm. Fluid Sci.
,
1
(
2
), pp.
183
194
.10.1016/0894-1777(88)90035-0
5.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K. N.
, and
Vijayan
,
P. K.
,
2010
, “
CFD Analysis of Single-Phase Flows Inside Helically Coiled Tubes
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
430
446
.10.1016/j.compchemeng.2009.11.008
6.
Jayakumar
,
J. S.
,
2012
,
Helically Coiled Heat Exchangers
,
INTECH Open Access Publisher
,
Rijeka, Croatia
.
7.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Yoshida
,
T.
,
1994
, “
Torsion Effect on the Flow in a Helical Pipe
,”
Fluid Dyn. Res.
,
14
(
5
), pp.
259
273
.10.1016/0169-5983(94)90035-3
8.
Yamamoto
,
K.
,
Akita
,
T.
,
Ikeuchi
,
H.
, and
Kita
,
Y.
,
1995
, “
Experimental Study of the Flow in a Helical Circular Tube
,”
Fluid Dyn. Res.
,
16
(
4
), pp.
237
249
.10.1016/0169-5983(95)00022-6
9.
Yamamoto
,
K.
,
Aribowo
,
A.
,
Hayamizu
,
Y.
,
Hirose
,
T.
, and
Kawahara
,
K.
,
2002
, “
Visualization of the Flow in a Helical Pipe
,”
Fluid Dyn. Res.
,
30
(
4
), pp.
251
267
.10.1016/S0169-5983(02)00043-6
10.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat M ass Trans.
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
11.
Siegel
,
R.
,
Sparrow
,
E. M.
, and
Hallman
,
T. M.
,
1958
, “
Steady Laminar Heat Transfer in a Circular Tube With Prescribed Wall Heat Flux
,”
Appl. Sci. Res., Sect. A
,
7
(
5
), pp.
386
392
.10.1007/BF03184999
12.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1981
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1–6
), pp.
185
200
.10.1080/00986448108911023
13.
Abul-Hamayel
,
M. A.
, and
Bell
,
K. J.
,
1979
, “
Heat Transfer in Helically Coiled Tubes With Laminar Flow
,”
Exp. Thermal Fluid Sci.
,
1
(
2
), pp.
183
194
. https://shareok.org/bitstream/handle/11244/24362/Thesis-1979D-A166h.pdf?sequence=1
14.
Seban
,
R. A.
, and
McLaughlin
,
E. F.
,
1963
, “
Heat Transfer in Tube Coils With Laminar and Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
6
(
5
), pp.
387
395
.10.1016/0017-9310(63)90100-5
15.
Ali
,
S.
,
2001
, “
Pressure Drop Correlations for Flow Through Regular Helical Coil Tubes
,”
Fluid Dyn. Res.
,
28
(
4
), pp.
295
310
.10.1016/S0169-5983(00)00034-4
16.
Kedzierski
,
M. A.
, and
Kim
,
M. S.
,
1996
, “
Single-Phase Heat Transfer and Pressure Drop Characteristics of an Integral-Spine Fin Within an Annulus
,”
J. Enhanced Heat Transfer
,
3
(
3
), pp.
201
210
.10.1615/JEnhHeatTransf.v3.i3.40
17.
Kareem
,
M. K.
,
Abed
,
W. M.
, and
Dawood
,
H. K.
,
2020
, “
Numerical Simulation of Hydrothermal Behaviour in a Concentric Curved Annular Tube
,”
Heat Transfer—Asian Res.
,
49
(
5
), pp.
2494
2520
.10.1002/htj.21732
18.
White
,
C. M.
,
1929
, “
Streamline Flow Through Curved Pipes
,”
Proc. R. Soc. London A
,
123
(
792
), pp.
645
663
.
19.
White
,
C. M.
,
1932
, “
Fluid Friction and Its Relation to Heat Transfer
,”
Trans. Inst. Chem. Eng., London
,
10
, p.
66e86
.
20.
Prandtl
,
L.
,
1949
, “
Fuhrer Dmchdie Stromungslehre
,”
Essentials of Fluid Dynamics
(Braunsschweigh; English Translation, p. 159, 1954), 3rd ed.,
Blackie and Son
,
London
, p.
168
.
21.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Jiang
,
R.
,
1998
, “
Stability of the Flow in a Helical Tube
,”
Fluid Dyn. Res.
,
22
(
3
), pp.
153
170
.10.1016/S0169-5983(97)00032-4
22.
Adler
,
M.
,
1934
, “
Strömung in Gekrümmten Rohren
,”
ZAMM‐J. Appl. Math. Mech./Z. Für Angew. Mathematik Und Mechanik
,
14
(
5
), pp.
257
275
.10.1002/zamm.19340140502
23.
Hasson
,
D.
,
1955
, “
Streamline Flow Resistance in Coils
,”
Res. Corresp
,
1
(
1
), p. S1.
24.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
,
81
(
2
), pp.
123
134
.10.1115/1.4008390
25.
Mori
,
Y.
, and
Nakayama
,
W.
,
1967
, “
Study on Forced Convective Heat Transfer in Curved Pipes (3rd Report, Theoretical Analysis of Uniform Wall Temperature and Practical Formulae)
,”
Int. J. Heat Mass Transfer
,
10
(
5
), pp.
681
695
.10.1016/0017-9310(67)90113-5
26.
Mishra
,
P.
, and
Gupta
,
S. N.
,
1979
, “
Momentum Transfer in Curved Pipes
,”
Newtonian Fluids. Ind. Eng. Chem. Process Des. Develop.
,
18
(
1
), pp.
130
137
.10.1021/i260069a017
27.
Castiglia
,
F.
,
Chiovaro
,
P.
,
Ciofalo
,
M.
,
Liberto
,
M. D.
,
Maio
,
P.
,
Piazza
,
I. D.
,
Giardina
,
M.
,
Mascari
,
F.
,
Morana
,
G.
, and
Vella
,
G.
,
2010
, “
Modelling Flow and Heat Transfer in Helically Coiled Pipes—Part 3: Assessment of Turbulence Models, Parametrical Study and Proposed Correlations for Fully Turbulent Flow in the Case of Zero Pitch
,” Report Ricerca di Sistema Elettrico.
28.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
29.
Dean
,
W. R.
,
1927
, “
XVI—Note on the Motion of Fluid in a Curved Pipe
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
You do not currently have access to this content.