Abstract

The objective of this work is to investigate the aerodynamics and thermal interactions between a spreading flame and the surrounding walls as well as their effects on fire behaviors. A three-dimensional transient computational fluid dynamics (CFD) combustion model is used to simulate concurrent-flow flame spread over a thin solid sample in a narrow flow duct. The height of the flow duct is the main parameter. The numerical results predict a quenching height for the flow duct below which the flame fails to spread. For duct heights sufficiently larger than the quenching height, the flame reaches a steady spreading state before the sample is fully consumed. The flame spread rate and the pyrolysis length at steady-state first increase and then decrease when the flow duct height decreases. The detailed gas and solid profiles show that flow confinement has multiple effects on the flame spread process. On one hand, it accelerates flow during thermal expansion from combustion, intensifying the flame. On the other hand, increasing flow confinement reduces the oxygen supply to the flame and increases conductive heat loss to the walls, both of which weaken the flame. These competing effects result in the aforementioned nonmonotonic trend of flame spread rate as duct height varies. Near the quenching duct height, the transient model reveals that the flame exhibits oscillation in length, flame temperature, and flame structure. This phenomenon is suspected to be due to thermodiffusive instability.

References

References
1.
Evarts
,
B.
,
2019
,
Fire Loss in the United States During 2018
,
National Fire Protection Association
,
Quincy, MA
.
2.
Lattimer
,
B. Y.
, and
Usman
,
S.
,
2003
, “
Thermal Characteristics of Fires in a Noncombustible Corner
,”
Fire Saf. J.
,
38
(
8
), pp.
709
745
.10.1016/S0379-7112(03)00065-1
3.
Poreh
,
M.
, and
Gordon
,
G.
,
2000
, “
A Study of Wall and Corner Fire Plumes
,”
Fire Saf. J.
,
34
(
1
), pp.
81
98
.10.1016/S0379-7112(99)00040-5
4.
Jamison
,
K. L. T.
, and
Boardman
,
D. A.
,
2016
, “
A New Fire Performance Test for Cavity Wall Insulation
,”
MATEC Web of Conferences
,
46
, p.
02004
.10.1051/matecconf/20164602004
5.
Hu
,
L. H.
,
Peng
,
W.
, and
Huo
,
R.
,
2008
, “
Critical Wind Velocity for Arresting Upwind Gas and Smoke Dispersion Induced by Near-Wall Fire in a Road Tunnel
,”
J. Hazard. Mater.
,
150
(
1
), pp.
68
75
.10.1016/j.jhazmat.2007.04.094
6.
Tian
,
X.
,
Zhong
,
M.
,
Shi
,
C.
,
Zhang
,
P.
, and
Liu
,
C.
,
2017
, “
Full-Scale Tunnel Fire Experimental Study of Fire-Induced Smoke Temperature Profiles With Methanol-Gasoline Blends
,”
Appl. Therm. Eng.
,
116
, pp.
233
243
.10.1016/j.applthermaleng.2017.01.099
7.
Ferkul
,
P. V.
, and
T'ien
,
J. S.
,
1994
, “
A Model of Low-Speed Concurrent Flow Flame Spread Over a Thin Fuel
,”
Combust. Sci. Technol.
,
99
(
4–6
), pp.
345
370
.10.1080/00102209408935440
8.
Tseng
,
Y.-T.
, and
T'ien
,
J. S.
,
2010
, “
Limiting Length, Steady Spread, and Nongrowing Flames in Concurrent Flow Over Solids
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091201
.10.1115/1.4001645
9.
Olson
,
S. L.
, and
Ferkul
,
P. V.
,
2015
, “
Microgravity Flammability of PMMA Rods in Concurrent Flow
,”
Nineth U.S. National Combustion Meeting
, Cincinnati, OH, May 17–20. 
10.
Zhao
,
X.
,
Liao
,
Y.-T. T.
,
Johnston
,
M. C.
,
T'ien
,
J. S.
,
Ferkul
,
P. V.
, and
Olson
,
S. L.
,
2017
, “
Concurrent Flame Growth, Spread, and Quenching Over Composite Fabric Samples in Low Speed Purly Forced Flow in Microgravity
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2971
2978
.10.1016/j.proci.2016.06.028
11.
Olson
,
S. L.
,
Ferkul
,
P. V.
,
Bhattacharjee
,
S.
,
Miller
,
F. J.
,
Fernandez-Pello
,
C.
,
Link
,
S.
,
T'ien
,
J. S.
, and
Wichman
,
I.
,
2015
, “
Results From on-Board CSA-CP and CDM Sensor Readings During the Burning and Suppression of Solids—II (BASS-II) Experiment in the Microgravity Science Glovebox (MSG)
,”
45th International Conference on Environmental Systems
,
Bellevue, WA
, July 12–16, Paper No. ICES-2018-196. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150019858.pdf
12.
Li
,
C.
,
Liao
,
Y.-T. T.
,
T'ien
,
J. S.
,
Urban
,
D. L.
,
Ferkul
,
P.
,
Olson
,
S.
,
Ruff
,
G. A.
, and
Easton
,
J.
,
2018
, “
Transient Flame Growth and Spread Processes Over a Large Solid Fabric in Concurrent Low-Speed Flows in Microgravity—Model Versus Experiment
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
4163
4171
.10.1016/j.proci.2018.05.168
13.
Urban
,
D. L.
,
Ferkul
,
P.
,
Olson
,
S.
,
Ruff
,
G. A.
,
Easton
,
J.
,
T'ien
,
J. S.
,
Liao
,
Y.-T. T.
,
Li
,
C.
,
Fernandez-Pello
,
C.
,
Torero
,
J. L.
,
Legros
,
G.
,
Eigenbrod
,
C.
,
Smirnov
,
N.
,
Fujita
,
O.
,
Rouvreau
,
S.
,
Toth
,
B.
, and
Jomaas
,
G.
,
2019
, “
Flame Spread: Effects of Microgravity and Scale
,”
Combust. Flame
,
199
, pp.
168
182
.10.1016/j.combustflame.2018.10.012
14.
Shih
,
H.-Y.
, and
T'ien
,
J. S.
,
1997
, “
Modeling Wall Influence on Solid-Fuel Flame Spread in a Flow Tunnel
,”
AIAA Paper No. 97-0236
. 10.2514/6.97-0236
15.
Shih
,
H.-Y.
,
2009
, “
Flame Spread and Interactions in an Array of Thin Solids in Low-Speed Concurrent Flows
,”
Combust. Theory Modell.
,
13
(
3
), pp.
443
459
.10.1080/13647830902807314
16.
Malhotra
,
V.
,
Kumar
,
C.
, and
Kumar
,
A.
,
2013
, “
Opposed Flow Flame Spread Over an Array of Thin Solid Fuel Sheets in a Microgravity Environment
,”
Combust. Theory Modell.
,
17
(
5
), pp.
835
857
.10.1080/13647830.2013.809797
17.
Liao
,
Y.-T. T.
, and
T'ien
,
J. S.
,
2013
, “
A Numerical Simulation of Transient Ignition and Ignition Limit of a Composite Solid by a Localised Radiant Source
,”
Combust. Theory Modell.
,
17
(
6
), pp.
1096
1124
.10.1080/13647830.2013.831486
18.
Zhao
,
X.
, and
T'ien
,
J. S.
,
2015
, “
A Three-Dimensional Transient Model for Flame Growth and Extinction in Concurrent Flows
,”
Combust. Flame
,
162
(
5
), pp.
1829
1839
.10.1016/j.combustflame.2014.12.003
19.
Tseng
,
Y.-T.
,
2011
, “
Three-Dimensional Model of Solid Ignition and Ignition Limit by a Non-Uniformly Distributed Radiant Heat Source
,” Ph.D. dissertation, Case Western Reserve University, Cleveland, OH.
20.
Li
,
C.
, and
Liao
,
Y.-T. T.
,
2018
, “
Numerical Investigation of Flame Splitting Phenomenon in Upward Flame Spread Over Solids With a Two-Stage Pyrolysis Model
,”
Combust. Sci. Technol.
,
190
(
12
), pp.
2082
2096
.10.1080/00102202.2018.1489380
21.
Smoke
,
M. D.
, and
Giovangigli
,
V.
,
1991
, “
Formulation of the Premixed and Nonpremixed Test Problems
,”
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,
Springer
,
Berlin
, pp.
1
28
.
22.
Lefebvre
,
A. W.
,
1983
,
Gas Turbine Combustion
,
McGraw-Hill
,
New York
.
23.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1976
,
Gas Dynamics
,
Wiley
,
New York
.
24.
Richard
,
P.
,
2015
, “
Radiative Characteristics of a Thin Solid Fuel at Discrete Levels of Pyrolysis: Angular, Spectral, and Thermal Dependencies
,” Ph.D. dissertation,
Case Western Reserve University
,
Cleveland, OH
.
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
26.
Perić.
,
H. L. a. M.
,
1994
, “
Vectorized Strongly Implicit Solving Procedure for a Seven-Diagonal Coefficient Matrix
,”
Int. J. Numer. Meth. Heat Fluid Flow
,
4
(
2
), pp.
159
172
.10.1108/EUM0000000004106
27.
Dietrich
,
D. L.
,
Ross
,
H. D.
,
Shu
,
Y.
,
Chang
,
P.
, and
T'ien
,
J. S.
,
2000
, “
Candle Flames in Non-Buoyant Atmospheres
,”
Combust. Sci. Technol.
,
156
(
1
), pp.
1
24
.10.1080/00102200008947294
28.
Buckmaster
,
J.
, and
Zhang
,
Y.
,
1999
, “
Oscillating Edge-Flames
,”
Combust. Theory Modell.
,
3
(
3
), pp.
547
565
.10.1088/1364-7830/3/3/307
29.
Schiller
,
D. N.
,
Ross
,
H. D.
, and
Sirignano
,
W. A.
,
1996
, “
Computational Analysis of Flame Spread Across Alcohol Pools
,”
Combust. Sci. Technol.
,
118
(
4–6
), pp.
203
255
.10.1080/00102209608951980
30.
Kumar
,
K. M. N.
, and
Kumar
,
A.
,
2017
, “
The Dynamics of Near Limit Self-Propagating Flame Over Thin Solid Fuels in Microgravity
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
3081
3087
.10.1016/j.proci.2016.06.154
31.
Olson
,
S. L.
,
Miller
,
F. J.
,
Jahangirian
,
S.
, and
Wichman
,
I. S.
,
2009
, “
Flame Spread Over Thin Fuels in Actual and Simulated Microgravity Conditions
,”
Combust. Flame
,
156
(
6
), pp.
1214
1226
.10.1016/j.combustflame.2009.01.015
32.
Wang
,
S.
,
Wang
,
S.
,
Zhu
,
K.
,
Xiao
,
Y.
, and
Lu
,
Z.
,
2016
, “
Near Quenching Limit Instabilities of Concurrent Flame Spread Over Thin Solid Fuel
,”
Combust. Sci. Technol.
,
188
(
3
), pp.
451
471
.10.1080/00102202.2015.1125346
You do not currently have access to this content.