Abstract

We investigate heat transfer in supercritical steam flowing in a spiral tube by conducting three-dimensional numerical simulations. The current numerical solver has been validated with the existing experimental results, and simulations are performed by varying different geometric parameters of a spiral tube. The flow dynamics and heat transfer in a spiral tube are compared against those in a straight tube. For the parameters range considered in the present study, it is found that the heat transfer coefficient (HTC) in the spiral tube is 29% higher than that in the case of a straight tube for the same flow and thermal conditions. Our results indicate that the tangential velocity component resulting due to the spiraling effect of the steam is the primary reason for the enhancement of the HTC value. It is observed that while the HTC in a spiral tube is inversely related to the spiral diameter, it does not exhibit a strong relationship with the spiral pitch. Moreover, three existing heat transfer correlations are evaluated under the spiral flow condition and it is observed that none of them can calculate the HTC value accurately in spiral tubes. Using the Buckingham π-theorem, three modified correlations are proposed for the low, moderate, and high heat flux regimes, which accurately predict the wall temperature and HTC of supercritical steam in spiral tubes in all the heat flux regimes. The correlations have an error band of less than ±20%.

References

References
1.
Kanungo
,
D. K.
, and
Sahu
,
K. C.
,
2020
, “
Numerical Simulation of Steam Flow Inside the Superheater Section of an Industrial Boiler Using a Real Gas Model
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071201
.10.1115/1.4046190
2.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer.
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
3.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer.
,
38
(
16
), pp.
3077
3084
.10.1016/0017-9310(95)00008-W
4.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renewable Sustainable Energy. Rev.
,
10
(
5
), pp.
463
490
.10.1016/j.rser.2004.09.014
5.
Bae
,
Y.
,
Kim
,
H.
, and
Yoo
,
T. H.
,
2011
, “
Effect of Helical Wire Mixed Convection Heat Transfer to Carbon Dioxide in Vertical Circular Tube at Supercritical Pressures
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
340
351
.10.1016/j.ijheatfluidflow.2010.06.013
6.
Mirgolbabaei
,
H.
,
2018
, “
Numerical Investigation of Vertical Helically Coiled Tube Heat Exchangers Thermal Performance
,”
Appl. Therm. Eng.
,
136
, pp.
252
259
.10.1016/j.applthermaleng.2018.02.061
7.
Li
,
Z.
,
Zhai
,
Y.
,
Bi
,
D.
,
Li
,
K.
,
Wang
,
H.
, and
Lu
,
J.
,
2017
, “
Orientation Effect in Helical Coils With Smooth and Rib-Roughened Wall: Toward Improved Gas Heaters for Supercritical Carbon Dioxide Rankine Cycles
,”
Energy
,
140
, pp.
530
545
.10.1016/j.energy.2017.09.010
8.
Ahadi
,
M.
, and
Abbassi
,
A.
,
2015
, “
Entropy Generation Analysis of Laminar Forced Convection Through Uniformly Heated Helical Coils Considering Effects of High Length and Heat Flux and Temperature Dependence of Thermophysical Properties
,”
Energy
,
82
, pp.
322
332
.10.1016/j.energy.2015.01.041
9.
Sadighi
,
D. H.
,
Jafarmadar
,
S.
, and
Hashemian
,
M.
,
2015
, “
The Effect of Flow, Thermodynamic and Geometrical Characteristics on Exergy Loss in Shell and Coiled Tube Heat Exchangers
,”
Energy
,
91
, pp.
678
684
.10.1016/j.energy.2015.08.084
10.
Satapathy
,
A. K.
,
2009
, “
Thermodynamic Optimization of a Coiled Tube Heat Exchanger Under Constant Wall Heat Flux Condition
,”
Energy
,
34
(
9
), pp.
1122
1126
.10.1016/j.energy.2009.04.028
11.
Khorasani
,
S.
,
Jafarmadar
,
S.
,
Pourhedayat
,
S.
,
Abdollahi
,
M. A. A.
, and
Heydarpour
,
A.
,
2019
, “
Experimental Investigations on the Effect of Geometrical Properties of Helical Wire Turbulators on Thermal Performance of a Helically Coiled Tube
,”
Appl. Therm. Eng.
,
147
, pp.
983
990
.10.1016/j.applthermaleng.2018.09.092
12.
Kushwaha
,
N.
,
Vikash
., and
Kumar
,
V.
,
2019
, “
Impact of Mixed Convective and Radiative Heat Transfer in Spiral-Coiled Tubes
,”
ASME J. Heat Trans.
,
141
(
8
), p.
081001
.10.1115/1.4043946
13.
Zhao
,
H.
,
Li
,
X.
, and
Wu
,
X.
,
2017
, “
Numerical Investigation of Supercritical Water Turbulent Flow and Heat Transfer Characteristics in Vertical Helical Tubes
,”
J. Supercrit. Fluids
,
127
, pp.
48
61
.10.1016/j.supflu.2017.03.016
14.
Liu
,
X.
,
Xu
,
X.
,
Liu
,
C.
,
Bai
,
W.
, and
Dang
,
C.
,
2018
, “
Heat Transfer Deterioration in Helically Coiled Heat Exchangers in Trans-Critical CO2 Rankine Cycles
,”
Energy
,
147
, pp.
1
14
.10.1016/j.energy.2017.12.163
15.
Liu
,
X.
,
Xu
,
X.
,
Liu
,
C.
,
Ye
,
J.
,
Li
,
H.
,
Bai
,
W.
, and
Dang
,
C.
,
2017
, “
Numerical Study of the Effect of Buoyancy Force and Centrifugal Force on Heat Transfer Characteristics of Supercritical CO2 in Helically Coiled Tube at Various Inclination Angles
,”
Appl. Therm. Eng.
,
116
, pp.
500
515
.10.1016/j.applthermaleng.2017.01.103
16.
Xu
,
X.
,
Liu
,
C.
,
Dang
,
C.
,
Wu
,
Y.
, and
Liu
,
X.
,
2016
, “
Experimental Investigation on Heat Transfer Characteristics of Supercritical CO2 Cooled in Horizontal Helically Coiled Tube
,”
Int. J. Refrig.
,
67
, pp.
190
201
.10.1016/j.ijrefrig.2016.03.010
17.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Super-critical Pressures
,”
Westinghouse Electric Corporation, Atomic Power Division
,
Pittsburgh, PA
, Report No. WCAP-2056.
18.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Trans.
,
87
(
4
), pp.
477
483
.10.1115/1.3689139
19.
Dravid
,
A. N.
,
Smith
,
K. A.
,
Merrill
,
E. W.
, and
Brian
,
P. L. T.
,
1971
, “
Effect of Secondary Fluid on Laminar Flow Heat Transfer in Helically Coiled Tubes
,”
AIChE J.
,
17
(
5
), pp.
1114
1122
.10.1002/aic.690170517
20.
Cengiz
,
Y.
,
Yasar
,
B.
, and
Dursun
,
P.
,
1995
, “
Heat Transfer and Pressure Drops in Rotating Helical Pipes
,”
Appl. Energy
,
50
, pp.
85
90
.10.1016/0306-2619(95)90765-9
21.
Rahul
,
S.
,
Gupta
,
S. K.
, and
Subbarao
,
P. M. V.
,
1997
, “
An Experimental Study for Estimating Heat Transfer Coefficient From Coiled Tube Surfaces in Cross-Flow of Air
,”
Third ISHMT-ASME Heat and Mass Transfer Conference and Fourth National Heat and Mass Transfer Conference
, IIT Kanpur, India, Dec. 31, pp.
381
385
22.
Kalb
,
C. E.
, and
Seader
,
J. D.
,
1974
, “
Fully Developed Viscous-Flow Heat Transfer in Curved Circular Tubes With Uniform Wall Temperature
,”
AIChE J.
,
20
(
2
), pp.
340
346
.10.1002/aic.690200220
23.
Mokry
,
S.
,
Pioro
,
I.
,
Kirillov
,
P.
, and
Gospodinov
,
Y.
,
2010
, “
Supercritical-Water Heat Transfer in a Vertical Bare Tube
,”
Nucl. Eng. Des.
,
240
(
3
), pp.
568
576
.10.1016/j.nucengdes.2009.09.003
24.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
25.
ANSYS, Inc.
,
2017
, “
Ansys Fluent Theory Guide 18.1
,”
ANSYS
,
Canonsburg, PA
.
26.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2003
, “
Thermophysical Properties of Fluid Systems. NIST Chemistry Webbook
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, NIST Standard No. 69.
You do not currently have access to this content.