Abstract

Microrib is regarded as an efficient method to regulate the heat transfer and thermal cracking of hydrocarbon fuel in regenerative cooling channels of advanced aero-engines. In order to explore the regulation mechanism of microribs on heat transfer of endothermic hydrocarbon fuel with thermal cracking in the unilateral heated channels, a three-dimensional simulation model including a 22-step cracking mechanism was built and experimentally tested. Besides, a macroscopic approach based on time scale analysis is proposed to estimate effects of obstacles on turbulence and thermal cracking. The studies demonstrated that due to unilateral heating, the regulation of microribs on heat transfer and thermal cracking is nonuniform in the channel, relating to local turbulence intensity and fluid properties. Particularly, the thermal cracking of fuel responses more slowly than turbulence when meeting obstacles. In this case, the regulation of microribs on the heat transfer characteristics of cracking hydrocarbon fuel is dominated by the direct perturbation of microribs on flow momentum, not through promoting chemical absorption of thermal cracking by microribs. Furthermore, higher fuel conversion and higher fluid temperature both assist the promotion of microribs on thermal cracking to a limited extent but has little effect on the acceleration of microribs on local turbulent flow.

References

1.
Li
,
J.
,
Zhu
,
G.
,
Yan
,
O. P.
,
Li
,
W. P.
,
Zhang
,
S. K.
, and
Qin
,
F.
,
2019
, “
Experimental Investigation on Upstream Fuel Injection Technique of RBCC Scramjet Mode
,”
Appl. Therm. Eng.
,
154
, pp.
450
457
.10.1016/j.applthermaleng.2019.03.097
2.
Zhang
,
S. L.
,
Qin
,
J.
,
Xie
,
K. L.
,
Feng
,
Y.
, and
Bao
,
W.
,
2016
, “
Thermal Behavior Inside Scramjet Cooling Channels at Different Channel Aspect Ratios
,”
J. Propulsion Power
,
32
(
1
), pp.
57
70
.10.2514/1.B35563
3.
Kang
,
K.
, and
Yang
,
K. S.
,
2017
, “
Heat Transfer Enhancement in Turbulent Ribbed-Pipe Flow
,”
ASME J. Heat Transfer
,
139
(
7
), p.
071901
.10.1115/1.4035712
4.
Zhu
,
J. F.
,
Li
,
X. Y.
,
Wang
,
S. L.
,
Yang
,
Y. R.
, and
Wang
,
X. D.
,
2019
, “
Performance Comparison of Wavy Microchannel Heat Sinks With Wavy Bottom Rib and Side Rib Designs
,”
Int. J. Therm. Sci.
,
146
, p.
106068
.10.1016/j.ijthermalsci.2019.106068
5.
Promthaisong
,
P.
, and
Eiamsa-Ard
,
S.
,
2019
, “
Fully Developed Periodic and Thermal Performance Evaluation of a Solar Air Heater Channel With Wavy-Triangular Ribs Placed on an Absorber Plate
,”
Int. J. Therm. Sci.
,
140
, pp.
413
428
.10.1016/j.ijthermalsci.2019.03.010
6.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S. T.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Effect of the Broken Rib Locations on the Heat Transfer and Fluid Flow in a Rotating Latticework Duct
,”
ASME J. Heat Transfer
,
141
(
10
), p.
102102
.10.1115/1.4044247
7.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
W.
,
Wang
,
L.
,
Xie
,
G. N.
, and
Sunden
,
B.
,
2019
, “
Heat Transfer Enhancement and Turbulent Flow in a Rectangular Channel Using Perforated Ribs With Inclined Holes
,”
ASME J. Heat Transfer
,
141
(
4
), p.
041702
.10.1115/1.4042841
8.
Brahim
,
B.
, and
Miloud
,
A.
,
2019
, “
Numerical Simulation of the Effect of Channel Orientation on Fluid Flow and Heat Transfer at High Buoyancy Number in a Rotating Two-Pass Channel With Angled Ribs
,”
ASME J. Heat Transfer
,
141
(
2
), p.
022502
.10.1115/1.4041797
9.
Li
,
X.
,
Qin
,
J.
,
Zhang
,
S. L.
,
Cui
,
N. G.
, and
Bao
,
W.
,
2018
, “
Effects of Micro-Ribs on the Thermal Behavior of Transcritical N-Decane in Asymmetric Heated Rectangular Mini-Channels Under Near Critical Pressure
,”
ASME J. Heat Transfer
,
140
(
12
), p.
122402
.10.1115/1.4041049
10.
Vandewalle
,
L. A.
,
Van
,
C.
,
D. J.
,
Dedeyne
,
J. N.
,
Van Geem
,
K. M.
, and
Marin
,
G. B.
,
2017
, “
Dynamic Simulation of Fouling in Steam Cracking Reactors Using CFD
,”
Chem. Eng. J.
,
329
, pp.
77
87
.10.1016/j.cej.2017.06.113
11.
Xu
,
K. K.
,
Sun
,
X.
, and
Meng
,
H.
,
2018
, “
Conjugate Heat Transfer, Endothermic Fuel Pyrolysis and Surface Coking of Aviation Kerosene in Ribbed Tube at Supercritical Pressure
,”
Int. J. Therm. Sci.
,
132
, pp.
209
218
.10.1016/j.ijthermalsci.2018.06.008
12.
Avedisian
,
C. T.
,
Kuo
,
W. C.
,
Tsang
,
W.
, and
Lowery
,
A.
,
2018
, “
High Temperature Thermal Decomposition of Diethyl Carbonate by Pool Film Boiling
,”
ASME J. Heat Transfer
,
140
(
6
), p.
061501
.10.1115/1.4038572
13.
Jiao
,
S.
,
Li
,
S. F.
,
Pu
,
H.
,
Dong
,
M.
, and
Shang
,
Y.
,
2019
, “
Experimental Investigation on Thermal Cracking and Convective Heat Transfer Characteristics of Aviation Kerosene RP-3 in a Vertical Tube Under Supercritical Pressures
,”
Int. J. Therm. Sci.
,
146
, p.
106092
.10.1016/j.ijthermalsci.2019.106092
14.
Liang
,
C.
,
Wang
,
Y.
,
Jiang
,
S. C.
,
Zhang
,
Q. Y.
, and
Li
,
X. Y.
,
2017
, “
The Comprehensive Study on Hydrocarbon Fuel Pyrolysis and Heat Transfer Characteristics
,”
Appl. Therm. Eng.
,
117
, pp.
652
658
.10.1016/j.applthermaleng.2016.12.074
15.
Azih
,
C.
, and
Yaras
,
M. I.
,
2017
, “
Similarity Criteria for Modeling Mixed-Convection Heat Transfer in Ducted Flows of Supercritical Fluids
,”
ASME J. Heat Transfer
,
139
(
12
), p.
122501
.10.1115/1.4036689
16.
Majid
,
B.
, and
Mahdi
,
M.
,
2012
, “
A New Analysis of Heat Transfer Deterioration on Basis of Turbulent Viscosity Variations of Supercritical Fluids
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122503
.10.1115/1.4007313
17.
Jiang
,
Y. G.
,
Feng
,
Y.
,
Zhang
,
S. L.
,
Qin
,
J.
, and
Bao
,
W.
,
2016
, “
Numerical Heat Transfer Analysis of Transcritical Hydrocarbon Fuel Flow in a Tube Partially Filled With Porous Media
,”
Open Phys.
,
14
(
1
), pp.
659
667
.10.1515/phys-2016-0073
18.
Feng
,
Y.
,
Cao
,
J.
,
Li
,
X.
,
Qin
,
J.
, and
Rao
,
Y.
,
2017
, “
Flow and Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Mini-Channels With Dimples
,”
ASME J. Heat Transfer
,
139
(
12
), p.
122401
.10.1115/1.4037086
19.
Zhou
,
H.
,
Gao
,
X. K.
,
Liu
,
P. H.
,
Zhou
,
Q.
,
Wang
,
J. L.
, and
Li
,
X. Y.
,
2017
, “
Energy Absorption and Reaction Mechanism for Thermal Pyrolysis of N-Decane Under Supercritical Pressure
,”
Appl. Therm. Eng.
,
112
, pp.
403
412
.10.1016/j.applthermaleng.2016.10.057
20.
Wang
,
Y.
,
Zhao
,
Y.
,
Liang
,
C.
,
Chen
,
Y.
,
Zhang
,
Q.
, and
Li
,
X.
,
2017
, “
Molecular-Level Modeling Investigation of N-Decane Pyrolysis at High Temperature
,”
J. Anal. Appl. Pyrolysis
,
128
, pp.
412
422
.10.1016/j.jaap.2017.08.009
You do not currently have access to this content.