Abstract

This work addresses the magnetic and radiation effects on the fully developed mixed convective flow in a vertical channel occupied by a porous medium with the thermal nonequilibrium state. The assumption that the fluid is electrically conducted is taken into account and permitted by a uniform transversal magnetic field while the temperature of the wall is changing linearly with the direction of the fluid flow. The spectral collocation technique is used for the numerical solution, whereas the analytical solution is governed for the special case when the drag force F* and the ratio of porosity-scaled thermal conductivity γ are zero. It is observed that, in the buoyancy assisted case, the fluid flow for Ra<102,(Nuf) increased near the wall with increasing the Hartmann number (M). Beyond this when Ra102,(Nuf) is decreased with increasing M. It is also perceived that there exists an interval [0,H0] in which (Nuf) increases with increasing M as well as increasing radiation parameter Rd, furthermore beyond the value of H0, Nuf decreasing asymptotically. While for the buoyancy opposed case, the flow separation and inflection point appear in the velocity profile for different values of M, further both the flow separation and inflection point are dying out as M increases. Overall, for the both cases, the magnetic and radiation parameters are stabilizing the flow in the system.

References

1.
Hartmann
,
J.
, and
Lazarus
,
F.
,
1937
, “
Hg-Dynamics II. Experimental Investigation on the Flow of Mercury in Homogeneous Magnetic Field (Mathematisk-fysiske meddelelser)
,” Vol.
15
, Det Kgl Danske Videnskabernes Selskab, Bianco Lunos Bogtrykkeri A/S, Denmark, pp.
1
45
.
2.
 
Perlmutter
,
M.
, and
Siegel
,
R.
,
1961
, “
Heat Transfer to an Electrically Conducting Fluid Flowing in a Channel With a Transverse Magnetic Field
,” NASA, Washington, DC, Report No.
NASA TN-D-875
.https://apps.dtic.mil/docs/citations/AD0262048
3.
Alpher
,
R. A.
,
1961
, “
Heat Transfer in Magnetohydrodynamic Flow Between Parallel Plates
,”
Int. J. Heat Mass Transfer
,
3
(
2
), pp.
108
112
.10.1016/0017-9310(61)90073-4
4.
Gold
,
R. R.
,
1962
,
Magnetohydrodynamic Pipe Flow. Part 1
, Vol.
13
,
Cambridge University Press
,
Cambridge
, pp.
505
512
.
5.
Cogley
,
A. C.
,
Vincent
,
W. G.
, and
Gilles
,
S. E.
,
1968
, “
Differential Approximation for Radiative Transfer in a Nongrey Gas Near Equilibrium
,”
AIAA J.
,
6
(
3
), pp.
551
553
.10.2514/3.4538
6.
Ji
,
H. C.
, and
Gardner
,
R. A.
,
1997
, “
Numerical Analysis of Turbulent Pipe Flow in a Transverse Magnetic Field
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1839
1851
.10.1016/S0017-9310(96)00249-9
7.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1974
, “
Radiation Effect on Hydrodynamic Convection in a Vertical Channel
,”
Int. J. Heat Mass Transfer
,
17
(
12
), pp.
1437
1442
.10.1016/0017-9310(74)90053-2
8.
Sacheti
,
N. C.
,
Chandran
,
P.
, and
Singh
,
A. K.
,
1994
, “
An Exact Solution for Unsteady Magneto Hydrodynamic Free Convection Flow With Constant Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
21
(
1
), pp.
131
142
.10.1016/0735-1933(94)90090-6
9.
Makinde
,
O. D.
, and
Onyejekwe
,
O. O.
,
2011
, “
A Numerical Study of MHD Generalized Couette Flow and Heat Transfer With Variable Viscosity and Electrical Conductivity
,”
J. Magn. Magn. Mater.
,
323
(
22
), pp.
2757
2763
.10.1016/j.jmmm.2011.05.040
10.
Malekzadeh
,
A.
,
Heydarinasab
,
A.
, and
Dabir
,
B.
,
2011
, “
Magnetic Field Effect on Fluid Flow Characteristics in a Pipe for Laminar Flow
,”
J. Mech. Sci. Technol.
,
25
(
2
), pp.
333
339
.10.1007/s12206-010-1223-5
11.
Kou
,
H. S.
, and
Lu
,
I. T.
,
1993
, “
Combined Boundary and Inertial Effects for Fully Developed Mixed Convection in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
20
(
3
), pp.
333
345
.10.1016/0735-1933(93)90019-R
12.
Chamkha
,
A. J.
,
1997
, “
Non-Darcy Fully Developed Mixed Convection in a Porous Medium Channel With Heat Generating/Absorption Hydromagnetic Effect
,”
Numer. Heat Transfer, Part A
,
32
(
6
), pp.
653
675
.10.1080/10407789708913911
13.
Barletta
,
A.
,
Lazzari
,
S.
,
Magyari
,
E.
, and
Pop
,
I.
,
2008
, “
Mixed Convection With Heating Effects in a Vertical Porous Annulus With a Radially Varying Magnetic Field
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5777
5784
.10.1016/j.ijheatmasstransfer.2008.05.018
14.
Makinde
,
O. D.
, and
Ogulu
,
A.
,
2008
, “
The Effect of Thermal Radiation on the Heat and Mass Transfer Flow of a Variable Viscosity Fluid Past a Vertical Porous Plate Permeated by a Transverse Magnetic Field
,”
Chem. Eng. Commun.
,
195
(
12
), pp.
1575
1584
.10.1080/00986440802115549
15.
Chen
,
Y. C.
,
Chung
,
J. N.
,
Wu
,
C. S.
, and
Lue
,
Y. F.
,
2000
, “
Non-Darcy Mixed Convection in a Vertical Channel Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2421
2429
.10.1016/S0017-9310(99)00299-9
16.
Chen
,
Y. C.
,
2004
, “
Non-Darcy Flow Stability of Mixed Convection in a Vertical Channel Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1257
1266
.10.1016/j.ijheatmasstransfer.2003.09.010
17.
Bera
,
P.
, and
Khalili
,
A.
,
2006
, “
Influence of Prandtl Number on Stability of Mixed Convective Flow in a Vertical Channel Filled With a Porous Medium
,”
Phys. Fluids
,
18
, p.
124103
.10.1063/1.2405321
18.
Su
,
Y. C.
,
Wang
,
C. S.
,
Chung
,
J. N.
, and
Lee
,
S. T.
,
2000
, “
An Accurate Method of Simulation of Three-Dimensional Incompressible Heated Pipe Flow
,”
Numer. Heat Transfer
,
37
(
3
), pp.
293
308
.10.1080/104077900275413
19.
Kumar
,
A.
,
Bera
,
P.
, and
Kumar
,
J.
,
2011
, “
Non-Darcy Mixed Convection in a Vertical Pipe Filled With Porous Medium
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
725
735
.10.1016/j.ijthermalsci.2010.11.018
20.
Bera
,
P.
,
Kapoor
,
S.
, and
Khandelwal
,
M. K.
,
2012
, “
Double-Diffusive Mixed Convection in a Vertical Pipe: A Thermal Non-Equilibrium Approach
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7079
7092
.10.1016/j.ijheatmasstransfer.2012.07.022
21.
Wong
,
K. C.
, and
Saeid
,
N. H.
,
2009
, “
Numerical Study of Mixed Convection on Jet Impingement Cooling in a Horizontal Porous Layer Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
860
870
.10.1016/j.ijthermalsci.2008.06.004
22.
Lee
,
J.
,
Shivakumara
,
I. S.
, and
Ravisha
,
M.
,
2011
, “
Effect of Thermal Non-Equilibrium on Convective Instability in a Ferromagnetic Fluid-Saturated Porous Medium
,”
Transp. Porous Med.
,
86
(
1
), pp.
103
124
.10.1007/s11242-010-9608-6
23.
Shivakumara
,
I. S.
,
Lee
,
J.
,
Ravisha
,
M.
, and
Reddy
,
R. G.
,
2011
, “
The Onset of Brinkman Ferroconvection Using a Thermal Non-Equilibrium Model
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2116
2125
.10.1016/j.ijheatmasstransfer.2010.12.016
24.
Barletta
,
A.
, and
Celli
,
M.
,
2011
, “
Local Thermal Non-Equilibrium Flow With Viscous Dissipation in a Plane Horizontal Porous Layer
,”
Int. J. Therm. Sci.
,
50
(
1
), pp.
53
60
.10.1016/j.ijthermalsci.2010.08.013
25.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2017
, “
Effect of Local Thermal Nonequilibrium on the Stability of Natural Convection in an Oldroyd-B Fluid Saturated Vertical Porous Layer
,”
ASME J. Heat Transfer
,
139
(
4
), p.
10
.10.1115/1.4035199
26.
Borujerdi
,
A. N.
,
Noghrehabadi
,
A. R.
, and
Rees
,
D. A. S.
,
2007
, “
The Effect of Local Thermal Non-Equilibrium on Conduction in Porous Channels With a Uniform Heat Source
,”
Transp. Porous Med
,
69
, pp.
281
288
.10.1007/s11242-006-9064-5
27.
Forooghi
,
P.
,
Abkar
,
M.
, and
Avval
,
M. S.
,
2011
, “
Steady and Unsteady Heat Transfer in a Channel Partially Filled With Porous Media Under Thermal Non-Equilibrium Condition
,”
Transp. Porous Med.
,
86
(
1
), pp.
177
198
.10.1007/s11242-010-9615-7
28.
Khandelwal
,
M. K.
, and
Bera
,
P.
,
2012
, “
A Thermal Non-Equilibrium Perspective on Mixed Convection in a Vertical Channel
,”
Int. J. Therm. Sci.
,
56
, pp.
23
34
.10.1016/j.ijthermalsci.2012.01.014
29.
Bera
,
P.
, and
Khandelwal
,
M. K.
,
2016
, “
A Thermal Non-Equilibrium Perspective on Instability Mechanism of Non-Isothermal Poiseuille Flow in a Vertical Porous-Medium Channel
,”
Int. J. Therm. Sci.
,
105
, pp.
159
173
.10.1016/j.ijthermalsci.2016.03.002
30.
Buonomo
,
B.
,
Manca
,
O.
, and
Lauriat
,
G.
,
2014
, “
Forced Convection in Micro-Channels Filled With Porous Media in Local Thermal Non-Equilibrium Conditions
,”
Int. J. Therm. Sci.
,
77
, pp.
206
222
.10.1016/j.ijthermalsci.2013.11.003
31.
Mahmoudi
,
Y.
,
2015
, “
Constant Wall Heat Flux Boundary Condition in Micro-Channels Filled With a Porous Medium With Internal Heat Generation Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Heat Mass Transfer
,
85
, pp.
524
542
.10.1016/j.ijheatmasstransfer.2015.01.134
32.
Saeid
,
N. H.
,
2006
, “
Analysis of Free Convection About a Horizontal Cylinder in a Porous Media Using a Thermal Non-Equilibrium Model
,”
Int. J. Heat Mass Transfer
,
33
(
2
), pp.
158
165
.10.1016/j.icheatmasstransfer.2005.09.009
33.
Prakash
,
D.
,
Muthtamilselvan
,
M.
, and
Doh
,
D. H.
,
2014
, “
Unsteady MHD non-Darcian Flow Over a Vertical Stretching Plate Embedded in a Porous Medium With Non-Uniform Heat Generation
,”
Appl. Math. Comput.
,
236
, pp.
480
492
.10.1016/j.amc.2014.03.072
34.
Prakash
,
D.
,
Muthtamilselvan
,
M.
, and
Niu
,
X. D.
,
2016
, “
Unsteady MHD Non-Darcian Flow Over a Vertical Stretching Plate Embedded in a Porous Medium With Thermal Non-Equilibrium Model
,”
Adv. Appl. Math. Mech.
,
8
(
1
), pp.
52
66
.10.4208/aamm.2014.m462
35.
Muthtamilselvan
,
M.
,
Prakash
,
D.
, and
Doh
,
D. H.
,
2014
, “
Effect of Thermal Non-Equilibrium on Transient Hydromagnetic Flow Over a Moving Surface in a Nanofluid Saturated Porous Media
,”
J. Mech. Sci. Technol.
,
28
(
9
), pp.
3709
3718
.10.1007/s12206-014-0832-9
36.
Reddy
,
V. P.
,
Kiran Kumar
,
R. V. M. S. S.
,
Reddy
,
G. V.
,
Prasad
,
P. D.
, and
Varma
,
S. V. K.
,
2015
, “
Free Convection Heat and Mass Transfer Flow of Chemically Reactive and Radiation Absorption Fluid in an Aligned Magnetic Filed
,”
Proc. Eng.
,
127
, pp.
575
582
.10.1016/j.proeng.2015.11.347
37.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
,
Javed
,
M. Y.
, and
Ellahi
,
R.
,
2015
, “
Effect of Thermal Radiation on Magnetohydrodynamics Nano Fluid Flow and Heat Transfer by Means of Two Phase Model
,”
J. Magn. Magn. Mater
,
374
, pp.
36
43
.10.1016/j.jmmm.2014.08.021
38.
Endalew
,
M. F.
, and
Nayak
,
A.
,
2018
, “
Thermal Radiation and Inclined Magnetic Field Effects on MHD Flow Past a Linearly Accelerated Inclined Plate in a Porous Medium With Variable Temperature
,”
Heat Transfer–Asian Res.
,
48
, pp.
1
20
.10.1002/htj.21367
39.
Endalew
,
M. F.
, and
Sarkar
,
S.
,
2019
, “
Temporal Analysis of Dual Phase–Lag Double–Diffusive MHD Flow Within a Porous Microchannel With Chemical Reaction
,”
Heat Transfer–Asian Res.
,
48
(
4
), pp.
1292
1226
.10.1002/htj.21433
40.
Sarkar
,
S.
, and
Endalew
,
M. F.
,
2019
, “
Effects of Melting Process on the Hydromagnetic Wedge Flow of a Casson Nanofluid in a Porous Medium
,”
Boundary Value Probl.
,
43
, p.
43
.10.1186/s13661-019-1157-5
You do not currently have access to this content.