Abstract

Wall radiative heat transfer in inner straight fin tubes is very complex considering the coupling of heat conduction in fins and radiative heat transfer of medium with solid surfaces, influenced by a number of factors such as fin parameters, radiative properties and run conditions. The method of simulation is very inconvenient to design the heat exchanger involving the enhancement of inner straight fins on wall radiative heat transfer in tube, such as ascension pipe heat exchanger and radiant syngas cooler. In this study, a simplified method is used. The average radiative heat transfer between radiative medium and solid surfaces is first studied by simulation with fins supposed have a constant temperature. Then an approximate correlation of this radiative heat transfer coefficient is proposed using the traditional radiative heat transfer calculation method with a view coefficient, which has a little error within 15%. A calculation method of average wall radiative heat transfer coefficient is further derived based on fin theory with an average temperature of fin surface used to consider the varying of the temperature along the fin when the conductivity of fins is finite. Using the predicting method proposed, a method for design calculation of fins in tubes to optimize wall radiative heat transfer is also given with three dimensionless numbers of π/n, 2H/D, and nt/πD representing the structural properties of fins defined. Three cases of (ks = 43 W/(m•K), ɛw = 0.7, Tg = 1073.15 K, Tw = 573.15 K, D = 0.66 m, κD = 1.32), (ks = 162 W/(m•K), ɛw = 0.7, Tg = 1073.15 K, Tw = 573.15 K, D = 0.66 m, κD  = 1.32) and (ks = 43 W/(m•K), ɛw = 0.3, Tg = 973.15 K, Tw = 673.15 K, D = 0.66 m, κD = 0.66) are analyzed in detail based on the design calculation method. It is verified that the radiative heat transfer could be enhanced twice by introducing fins. Under the same h0, conductivity and emissivity are two important factors that should be considered to choose the material for fins. The microfins or the special treatments on the tube wall are a best choice for the fin material having a relatively small conductivity.

References

1.
Bisio
,
G.
, and
Rubatto
,
G.
,
2000
, “
Energy Saving and Some Environment Improvements in Coke-Oven Plants
,”
Energy
,
25
(
3
), pp.
247
265
.10.1016/S0360-5442(99)00066-3
2.
Zhang
,
S. J.
,
2019
, “
Pilot Study on Ascension-Pipe Heat Exchanger Used for Waste Heat Recovery of Coke Oven Gas
,”
Energy Procedia
,
158
, pp.
26
31
.10.1016/j.egypro.2019.01.029
3.
Wu
,
D. D.
, and
Li
,
J. X.
,
2018
, “
Heat Transfer Characteristics of Salt-Bath Structure Heat Exchanger in Ascension Pipe of Coke Oven
,”
Ciesc J.
,
69
(
7
), pp.
2869
2877
(in Chinese).10.11949/j.issn.0438-1157.20171667
4.
Peng
,
W. P.
, and
Jin
,
Z. P.
,
2018
, “
Study on Heat Transfer Characteristics of the Heat Exchanger for Heat Recovery of Coke Oven Gas
,”
Ind. Heat.
,
47
(
6
), pp.
5
8
(in Chinese).10.3969/j.issn.1002-1639.2018.06.002
5.
Wang
,
L.
,
Guo
,
Q. H.
,
Xu
,
J. L.
,
Qiu
,
J. Y.
, and
Yu
,
G. S.
,
2018
, “
Numerical Simulation of Division Wall Structure in Radiant Syngas Cooler for Radiant Syngas Cooling Process With Water Quench
,”
Coal Convers.
,
41
(
5
), pp.
65
72
(in Chinese).https://apps.webofknowledge.com/Search.do?product=UA&SID=7CIX2ZKu7h79PzNxKki&search_mode=GeneralSearch&prID=c496b5d3-5903-4377-921a-34178d934025
6.
Soliman
,
H. M.
, and
Feingold
,
A.
,
1977
, “
Analysis of Fully Developed Laminar Flow in Longitudinal Internally Finned Tubes
,”
Chem. Eng. J.
,
14
(
2
), pp.
119
128
.10.1016/0300-9467(77)85007-7
7.
Soliman
,
H. M.
,
Chau
,
T. S.
, and
Trupp
,
A. C.
,
1980
, “
Analysis of Laminar Heat Transfer in Internally Finned Tubes With Uniform Outside Wall Temperature
,”
ASME J. Heat Transfer
,
102
(
4
), pp.
598
604
.10.1115/1.3244358
8.
Soliman
,
H. M.
,
1981
, “
The Effect of Heat Transfer Fin Conductance on Laminar Characteristics of Internally Finned Tubes
,”
Can. J. Chem. Eng.
,
59
(
2
), pp.
251
256
.10.1002/cjce.5450590218
9.
Carnavos
,
T. C.
,
1979
, “
Cooling Air in Turbulent Flow With Internally Finned Tubes
,”
Heat Transfer Eng.
,
1
(
2
), pp.
41
46
.10.1080/01457637908939557
10.
Carnavos
,
T. C.
,
1980
, “
Heat Transfer Performance of Internally Finned Tubes in Turbulent Flow
,”
Heat Transfer Eng.
,
1
(
4
), pp.
32
37
.10.1080/01457638008939566
11.
Fabbri
,
G.
,
1998
, “
Heat Transfer Optimization in Internally Finned Tubes Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
41
, pp.
1243
1253
.10.1016/S0017-9310(97)00209-3
12.
Zeitoun
,
O.
, and
Hegazy
,
A. S.
,
2004
, “
Heat Transfer for Laminar Flow in Internally Finned Pipes With Different Fin Heights and Uniform Wall Temperature
,”
Heat Mass Transfer
,
40
(
3–4
), pp.
253
259
.10.1007/s00231-003-0446-8
13.
Wang
,
Q. W.
,
Lin
,
M.
, and
Zeng
,
M.
,
2009
, “
Effect of Lateral Fin Profiles on Turbulent Flow and Heat Transfer Performance of Internally Finned Tubes
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3006
3013
.10.1016/j.applthermaleng.2009.03.016
14.
Liu
,
L.
,
Ling
,
X.
, and
Peng
,
H.
,
2013
, “
Complex Turbulent Flow and Heat Transfer Characteristics of Tubes With Internal Longitudinal Plate Rectangle Fins in EGR Cooler
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
145
152
.10.1016/j.applthermaleng.2013.01.035
15.
Kim
,
D. K.
,
2016
, “
Thermal Optimization of Internally Finned Tube With Variable Fin Thickness
,”
Appl. Therm. Eng.
,
102
(
10
), pp.
1250
1261
.10.1016/j.applthermaleng.2016.04.060
16.
Huq
,
M.
,
Aziz-Ul Huq
,
A. M.
, and
Rahman
,
M. M.
,
1998
, “
Experimental Measurements of Heat Transfer in an Internally Finned Tube
,”
Int. Commun. Heat Mass Transfer
,
25
(
5
), pp.
619
630
.10.1016/S0735-1933(98)00049-9
17.
Prakash
,
C.
, and
Patankar
,
S. V.
,
1981
, “
Combined Free and Forced Convection in Vertical Tubes With Radial Internal Fins
,”
ASME J. Heat Transfer
,
103
(
3
), pp.
566
572
.10.1115/1.3244503
18.
Joo
,
Y.
, and
Kim
,
S. J.
,
2016
, “
Thermal Optimization of Vertically Oriented, Internally Finned Tubes in Natural Convection
,”
Int. J. Heat Mass Transfer
,
93
, pp.
991
999
.10.1016/j.ijheatmasstransfer.2015.10.034
19.
Pak
,
H.-Y.
,
Park
,
K.-W.
, and
Choi
,
M.-S.
,
1998
, “
Numerical Analysis of the Flow and Heat Transfer Characteristics for Forced Convection-Radiation
,”
Ksme Int. J.
,
12
(
2
), pp.
310
319
.10.1007/BF02947176
20.
Malekzadeh
,
P.
,
Rahideh
,
H.
, and
Karami
,
G.
,
2006
, “
Optimization of Convective–Radiative Fins by Using Differential Quadrature Element Method
,”
Energy Convers. Manage.
,
47
(
11–12
), pp.
1505
1514
.10.1016/j.enconman.2005.08.003
21.
Azarkish
,
H.
,
Sarvari
,
S. M. H.
, and
Behzadmehr
,
A.
,
2010
, “
Optimum Design of a Longitudinal Fin Array With Convection and Radiation Heat Transfer Using a Genetic Algorithm
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2222
2229
.10.1016/j.ijthermalsci.2010.06.023
22.
Qiu
,
Y.
,
Tian
,
M. C.
, and
Xiong
,
Z. X.
,
2013
, “
Natural Convection and Radiation Heat Transfer of an Externally-Finned Tube Vertically Placed in a Chamber
,”
Heat Mass Transfer
,
49
(
3
), pp.
405
412
.10.1007/s00231-012-1077-8
23.
Zhang
,
Y. G.
,
Li
,
Q. H.
, and
Feng
,
J. K.
,
2008
,
Theory and Calculation of Heat Transfer in Furnace
,
Tsinghua University Press
,
Beijing, China
.
You do not currently have access to this content.