Abstract

In this study, the specific heat of molten salt nano-eutectic (Li2CO3-K2CO3 doped with SiO2 nanoparticles) was theoretically and computationally investigated. The effective specific heat of a nano-eutectic can be significantly enhanced by the formation of needlelike nanostructures by salt eutectic. To investigate the effect of the formed nanostructure, its specific heat was theoretically calculated by a theoretical model. The mass fraction of the formed nanostructure was estimated by matlab. The theoretical prediction made a good agreement with the measured specific heat values from the literature with an error less than 3%. Additional verification of the proposed model was performed by a Molecular Dynamics simulation study. The simulated specific heat of pure molten salt eutectic made a good agreement with the literature value (1.6 kJ/kg °C with an error less than 1.7%). The simulated specific heat of nano-eutectic was 2.017 kJ/kg °C. The error between the theoretical prediction and the simulation is only 3.4% and the value made a good agreement with the experiment (1.9% max. error). The result shows that the enhanced specific heat of a nano-eutectic can be explained by the contribution of the formed nanostructures.

References

1.
Andreu-Cabedo
,
P.
,
Mondragon
,
R.
,
Hernandez
,
L.
,
Martinez-Cuenca
,
R.
,
Cabedo
,
L.
, and
Julia
,
J. E.
,
2014
, “
Increment of Specific Heat Capacity of Solar Salt With SiO2 Nanoparticles
,”
Nanoscale Res. Lett.
,
9
(
1
), pp.
582
611
.10.1186/1556-276X-9-582
2.
Chieruzzi
,
M.
,
Cerritelli
,
G. F.
,
Miliozzi
,
A.
, and
Kenny
,
J. M.
,
2013
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
448
.10.1186/1556-276X-8-448
3.
Lasfargues
,
M.
,
Geng
,
Q.
,
Cao
,
H.
, and
Ding
,
Y.
,
2015
, “
Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures
,”
Nanomaterials
,
5
(
3
), pp.
1136
1146
.10.3390/nano5031136
4.
Luo
,
Y.
,
Du
,
X.
,
Awad
,
A.
, and
Wen
,
D.
,
2017
, “
Thermal Energy Storage Enhancement of a Binary Molten Salt Via In-Situ Produced Nanoparticles
,”
Int. J. Heat Mass Transfer
,
104
, pp.
658
664
.10.1016/j.ijheatmasstransfer.2016.09.004
5.
Navas
,
J.
,
Sánchez-Coronilla
,
A.
,
Martín
,
E. I.
,
Teruel
,
M.
,
Gallardo
,
J. J.
,
Aguilar
,
T.
,
Gómez-Villarejo
,
R.
,
Alcántara
,
R.
,
Fernández-Lorenzo
,
C.
,
Piñero
,
J. C.
, and
Martín-Calleja
,
J.
,
2016
, “
On the Enhancement of Heat Transfer Fluid for Concentrating Solar Power Using Cu and Ni Nanofluids: An Experimental and Molecular Dynamics Study
,”
Nano Energy
,
27
, pp.
213
224
.10.1016/j.nanoen.2016.07.004
6.
Riazi
,
H.
,
Mesgari
,
S.
,
Ahmed
,
N.
, and
Taylor
,
R.
,
2016
, “
The Effect of Nanoparticle Morphology on the Specific Heat of Nanosalts
,”
Int. J. Heat Mass Transfer
,
94
, pp.
254
261
.10.1016/j.ijheatmasstransfer.2015.11.064
7.
Schuller
,
M.
,
Shao
,
Q.
, and
Lalk
,
T.
,
2015
, “
Experimental Investigation of the Specific Heat of a Nitrate-Alumina Nanofluid for Solar Thermal Energy Storage Systems
,”
Int. J. Therm. Sci.
,
91
, pp.
142
145
.10.1016/j.ijthermalsci.2015.01.012
8.
Seo
,
J.
, and
Shin
,
D.
,
2014
, “
Enhancement of Specific Heat of Ternary Nitrate (LiNO3-NaNO3-KNO3) Salt by Doping With SiO2 Nanoparticles for Solar Thermal Energy Storage
,”
Micro Nano Lett.
,
9
(
11
), pp.
817
820
.10.1049/mnl.2014.0407
9.
Seo
,
J.
, and
Shin
,
D.
,
2016
, “
Size Effect of Nanoparticle on Specific Heat in a Ternary Nitrate (LiNO3-NaNO3-KNO3) Salt Eutectic for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
102
, pp.
144
48
.10.1016/j.applthermaleng.2016.03.134
10.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.10.1115/1.4002600
11.
Shin
,
D.
,
Tiznobaik
,
H.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat Mechanism of Molten Salt Nanofluids
,”
Appl. Phys. Lett.
,
104
(
12
), p.
121914
.10.1063/1.4868254
12.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.10.1016/j.ijheatmasstransfer.2010.11.017
13.
Chieruzzi
,
M.
,
Cerritelli
,
G.
,
Miliozzi
,
A.
,
Kenny
,
J.
, and
Torre
,
L.
,
2017
, “
Heat Capacity of Nanofluids for Solar Energy Storage Produced by Dispersing Oxide Nanoparticles in Nitrate Salt Mixture Directly at High Temperature
,”
Sol. Energy Mater. Sol. Cells
,
167
, pp.
60
69
.10.1016/j.solmat.2017.04.011
14.
Shin
,
D.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat of Nanofluids Synthesized by Dispersing Alumina Nanoparticles in Alkali Salt Eutectic
,”
Int. J. Heat Mass Transfer
,
74
, pp.
210
214
.10.1016/j.ijheatmasstransfer.2014.02.066
15.
Shin
,
D.
, and
Banerjee
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of Nanomaterials Synthesized by Dispersing Silica Nanoparticles in Eutectic Mixtures
,”
ASME J. Heat Transfer
,
135
(
3
), p.
032801
.10.1115/1.4005163
16.
Tian
,
H.
,
Wang
,
W.
,
Ding
,
J.
,
Wei
,
X.
, and
Huang
,
C.
,
2016
, “
Preparation of Binary Eutectic Chloride/Expanded Graphite as High-Temperature Thermal Energy Storage Materials
,”
Sol. Energy Mater. Sol. Cells
,
149
, pp.
187
94
.10.1016/j.solmat.2015.12.038
17.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
48
.10.1016/j.ijheatmasstransfer.2012.10.062
18.
Zhang
,
L.
,
Chen
,
X.
,
Wu
,
Y.
,
Lu
,
Y.
, and
Ma
,
C.
,
2016
, “
Effect of Nanoparticle Dispersion on Enhancing the Specific Heat Capacity of Quaternary Nitrate for Solar Thermal Energy Storage Application
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
808
13
.10.1016/j.solmat.2016.07.046
19.
Zhang
,
Z.
,
Yuan
,
Y.
,
Ouyang
,
L.
,
Sun
,
Q.
,
Cao
,
X.
, and
Alelyani
,
S.
,
2017
, “
Enhanced Thermal Properties of Li2CO3–Na2CO3–K2CO3 Nanofluids With Nanoalumina for Heat Transfer in High-Temperature CSP Systems
,”
J. Therm. Anal. Calorim.
,
128
(
3
), pp.
1783
1792
.10.1007/s10973-016-6050-1
20.
Devaradjane
,
R.
, and
Shin
,
D.
,
2016
, “
Nanoparticle Dispersion on Ternary Nitrate Salts for Heat Transfer Fluid Applications in Solar Thermal Power
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051901
.10.1115/1.4030903
21.
Dudda
,
B.
, and
Shin
,
D.
,
2013
, “
Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications
,”
Int. J. Therm. Sci.
,
69
, pp.
37
42
.10.1016/j.ijthermalsci.2013.02.003
22.
Ho
,
M.
, and
Pan
,
C.
,
2017
, “
Experimental Investigation of Heat Transfer Performance of Molten HITEC Salt Flow With Alumina Nanoparticles
,”
Int. J. Heat Mass Transfer
,
107
, pp.
1094
1103
.10.1016/j.ijheatmasstransfer.2016.11.015
23.
Ho
,
M.
, and
Pan
,
C.
,
2014
, “
Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity
,”
Int. J. Heat Mass Transfer
,
70
, pp.
174
84
.10.1016/j.ijheatmasstransfer.2013.10.078
24.
Hu
,
Y.
,
He
,
Y.
,
Zhang
,
Z.
, and
Wen
,
D.
,
2017
, “
Effect of Al2O3 Nanoparticle Dispersion on the Specific Heat Capacity of a Eutectic Binary Nitrate Salt for Solar Power Applications
,”
Energy Convers. Manage.
,
142
, pp.
366
73
.10.1016/j.enconman.2017.03.062
25.
Jo
,
B.
, and
Banerjee
,
D.
,
2014
, “
Enhanced Specific Heat Capacity of Molten Salt-Based Nanomaterials: Effects of Nanoparticle Dispersion and Solvent Material
,”
Acta Mater.
,
75
, pp.
80
91
.10.1016/j.actamat.2014.05.005
26.
Lasfargues
,
M.
,
Bell
,
A.
, and
Ding
,
A.
,
2016
, “
In Situ Production of Titanium Dioxide Nanoparticles in Molten Salt Phase for Thermal Energy Storage and Heat-Transfer Fluid Applications
,”
J. Nanopart. Res.
,
18
(
6
), pp.
1
11
.
27.
Hentschke
,
R.
,
2016
, “
On the Specific Heat Capacity Enhancement in Nanofluids
,”
Nanoscale Res. Lett.
,
11
(
1
), pp.
1
11
.
28.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Experimental Validation of Enhanced Heat Capacity of Ionic Liquid-Based Nanomaterial
,”
Appl. Phys. Lett.
,
102
(
17
), pp.
173906
14
.10.1063/1.4801645
29.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME-Publications-Fed, 231, pp. 99-106.
30.
Keblinski
,
P.
,
Eastman
,
J.
, and
Cahill
,
D.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
6
), pp.
36
44
.10.1016/S1369-7021(05)70936-6
31.
Wang
,
X. Q.
, and
Mujumdar
,
A.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
32.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2 O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.10.1063/1.2890431
33.
Namburu
,
P.
,
Kulkarni
,
D.
,
Dandekar
,
A.
, and
Das
,
D.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.10.1049/mnl:20070037
34.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.10.1115/1.3090813
35.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
36.
Wang
,
L.
,
Tan
,
Z.
,
Sh
,
M.
,
Liang
,
D.
, and
Li
,
G.
,
2001
, “
Enhancement of Molar Heat Capacity of Nanostructured Al2O3
,”
J. Nanopart. Res.
,
3
(
5/6
), pp.
483
487
.10.1023/A:1012514216429
37.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
,
2006
, “
Surface and Size Effects on the Specific Heat Capacity of Nanoparticles
,”
Int. J. Thermophys.
,
27
(
1
), pp.
139
151
.10.1007/s10765-006-0022-9
38.
Salanne
,
M.
, and
Madden
,
P. A.
,
2011
, “
Polarization Effects in Ionic Solids and Melts
,”
Mol. Phys.
,
109
(
19
), pp.
2299
2315
.10.1080/00268976.2011.617523
39.
Chakraborty
,
B.
,
Wang
,
J.
, and
Eapen
,
J.
,
2013
, “
Multicomponent Diffusion in Molten LiCl-KCl: Dynamical Correlations and Divergent Maxwell-Stefan Diffusivities
,”
Phys. Rev. E
,
87
(
5
), p.
052312
.10.1103/PhysRevE.87.052312
40.
Saeedian
,
M.
,
Mahjour-Shafiei
,
M.
,
Shojaee
,
E.
, and
Mohammadizadeh
,
M. R.
,
2012
, “
Specific Heat Capacity of TiO2 Nanoparticles
,”
J. Comput. Theor. Nanosci.
,
9
(
4
), pp.
616
620
.10.1166/jctn.2012.2070
41.
Luo
,
W.
,
Hu
,
W.
, and
Xiao
,
S.
,
2008
, “
Size Effect on the Thermodynamic Properties of Silver Nanoparticles
,”
J. Phys. Chem. C
,
112
(
7
), pp.
2359
2369
.10.1021/jp0770155
42.
Avramov
,
I.
, and
Michailov
,
M.
,
2008
, “
Specific Heat of Nanocrystals
,”
J. Phys. Condens. Matter
,
20
(
29
), p.
295224
.10.1088/0953-8984/20/29/295224
43.
Janz
,
G.
,
2013
,
Molten Salts Handbook
,
Elsevier
,
Amsterdam, The Netherlands
.
44.
Araki
,
N.
,
Matsuura
,
M.
,
Makino
,
A.
,
Hirata
,
T.
, and
Kato
,
Y.
,
1988
, “
Measurement of Thermophysical Properties of Molten Salts: Mixtures of Alkaline Carbonate Salts
,”
Int. J. Thermophys.
,
9
(
6
), pp.
1071
1080
.10.1007/BF01133274
45.
Chase
,
M.
, Jr.
,
Curnutt
,
J.
,
Downey
,
J.
, Jr.
,
McDonald
,
R.
,
Syverud
,
A.
, and
Valenzuela
,
E.
,
1982
, “
JANAF Thermochemical Tables, 1982 Supplement
,”
J. Phys. Chem. Ref. Data
,
11
(
3
), pp.
695
940
.10.1063/1.555666
46.
Parthé
,
E.
, and
Gelato
,
L. M.
,
1984
, “
The Standardization of Inorganic Crystal‐Structure Data: Erratum
,”
Acta Crystallogr. Sect. A
,
40
(
5
), pp.
616
616
.10.1107/S0108767384001252
47.
Gray
,
D. E.
,
1972
,
American Institute of Physics Handbook
,
McGraw‐Hill
,
New York
.
48.
Hemingway
,
B. S.
,
1987
, “
Quartz; Heat Capacities From 340 to 1000 K and Revised Values for the Thermodynamic Properties
,”
Am. Miner.
,
72
(
3–4
), pp.
273
279
. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/72/3-4/273/104940/Quartz-heat-capacities-from-340-to-1000-K-and?redirectedFrom=fulltext
49.
Pawar
,
V. B.
,
2015
, “
Computational Analysis of Nanostructures Formed in Molten Salt Nanofluids
,”
MS thesis
,
The University of Texas at Arlington
,
Arlington, TX
.https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/24971/Pawar_uta_2502M_12967.pdf?sequence=1
50.
Plimpton
,
S.
,
1995
, “
Computational Limits of Classical Molecular Dynamics Simulations
,”
Comput. Mater. Sci.
,
4
(
4
), pp.
361
364
.10.1016/0927-0256(95)00037-1
51.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.10.1088/0965-0393/18/1/015012
You do not currently have access to this content.