Abstract

This work examines the steady two-dimensional mixed convection boundary layer flow of non-Newtonian Carreau fluid embedded in a porous medium. The impermeable wedge is at rest over which the momentum and thermal boundary layers form due to the motion of Carreau fluid with a large Reynolds number. We consider local thermal nonequilibrium for which the temperature of the solid porous medium is different from that of the fluid phase, and hence, a single heat-transport equation is replaced by a two-temperature model. The governed equations for flow and heat transfer are converted into a system of ordinary differential equations using a similarity approach. It is observed that local thermal nonequilibrium effects are dominant for small interphase heat transfer rate and porosity scaled conductivity parameters. It is shown that the temperature at any location of the solid porous medium is always higher than that of the fluid phase. When these parameters are increased gradually, the local thermal equilibrium phase is recovered at which the temperatures of the fluid and solid are identical at each pore. A similar trend is noticed for both shear-thinning and shear-thickening fluids. The results further show that heat exchange between the fluid and solid porous medium is similar to both assisted and opposed flows and Carreau fluid. The velocity and temperature fields for the various increasing fluid index, Grashof number, and permeability show that the thickness of the momentum and thermal boundary layer is thinner.

References

1.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
, Dynamics of Polymeric Liquids,
Fluid Mechanics
, 2nd ed., Vol.
1
,
Wiley
,
New York
.10.1002/pi.4980200323
2.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
.10.1122/1.549276
3.
Kudenatti
,
R. B.
,
Misbah
,
N. E.
, and
Bharathi
,
M. C.
,
2020
, “
Boundary-Layer Flow of the Power-Law Fluid Over a Moving Wedge: A Linear Stability Analysis
,”
Eng. Comput.
, pp.
1
14
.10.1007/s00366-019-00914-x
4.
Kudenatti
,
R. B.
,
Misbah
,
N. E.
, and
Bharathi
,
M. C.
,
2020
, “
Stability of Hydromagnetic Boundary Layer Flow of Non-Newtonian Power-Law Fluid Flow Over a Moving Wedge
,”
Eng. Comput.
, pp.
1
20
.10.1007/s00366-020-01094-9
5.
Dawood
,
H. K.
,
Mohammed
,
H. A.
,
Sidik
,
N. A. C.
,
Munisamy
,
K. M.
, and
Wahid
,
M. A.
,
2015
, “
Forced, Natural and Mixed-Convection Heat Transfer and Fluid Flow in Annulus: A Review
,”
Int. J. Heat Mass Transfer
,
62
, pp.
45
57
.10.1016/j.icheatmasstransfer.2015.01.006
6.
Schlichting
,
H.
, and
Gerstern
,
K.
,
2004
,
Boundary Layer Theory
, 8th ed.,
Springer-Verlag
,
New Delhi
.
7.
Yuan
,
S.
,
1988
,
Foundations of Fluid Mechanics
,
Prentice Hall,
New Delhi, India.
8.
Khellaf
,
K.
, and
Lauriat
,
G.
,
2000
, “
Numerical Study of Heat Transfer in a Non-Newtonian Carreau-Fluid Between Rotating Concentric Vertical Cylinders
,”
J. Fluid Mech.
,
89
(
1–2
), pp.
45
61
.10.1016/S0377-0257(99)00030-0
9.
Hayat
,
T.
,
Asad
,
S.
,
Mustafa
,
M.
, and
Alsaedi
,
A.
,
2014
, “
Boundary Layer Flow of Carreau Fluid Over a Convectively Heated Stretching Sheet
,”
Appl. Math. Comput.
,
246
, pp.
12
22
.10.1016/j.amc.2014.07.083
10.
Khan
,
M.
,
Malik
,
M. Y.
,
Salahuddin
,
T.
, and
Khan
,
I.
,
2016
, “
Heat Transfer Squeezed Flow of Carreau Fluid Over a Sensor Surface With Variable Thermal Conductivity: A Numerical Study
,”
Results Phys.
,
6
, pp.
940
945
.10.1016/j.rinp.2016.10.024
11.
Khan
,
M.
, and
Hashim
,
2015
, “
Boundary Layer Flow and Heat Transfer to Carreau Fluid Over a Nonlinear Stretching Sheet
,”
AIP Adv.
,
5
(
10
), p.
107203
.10.1063/1.4932627
12.
Khan
,
M.
,
Nigar
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2020
, “
On the Numerical Simulation of Stagnation Point Flow of Non-Newtonian Fluid(Carreau Fluid) With Cattaneo-Christov Heat Flux
,”
Comput Methods Programs Biomed
,
187
, p.
105221
.10.1016/j.cmpb.2019.105221
13.
Bilal
,
S.
,
Alshomrani
,
A. S.
,
Malik
,
M. Y.
,
Kausar
,
N.
, and
Khan
,
F.
,
2018
, “
Analysis of Carreau Fluid in the Presence of Thermal Stratification and Magnetic Field Effect
,”
Results Phys.
,
10
, pp.
118
125
.10.1016/j.rinp.2018.05.005
14.
Rehman
,
K. U.
,
Alshomrani
,
A. S.
, and
Malik
,
M. Y.
,
2018
, “
Carreau Fluid Flow in a Thermally Stratified Medium With Heat Generation/Absorption Effects
,”
Case Stud. Therm. Eng.
,
12
, pp.
16
25
.10.1016/j.csite.2018.03.001
15.
Rehman
,
K. U.
,
Malik
,
M. Y.
,
Mahmood
,
R.
,
Kousar
,
N.
, and
Zehra
,
I.
,
2019
, “
A Potential Alternative Cfd Simulation for Steady Carreau–Bird Law-Based Shear Thickening Model: Part-I
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
4
), pp.
1
13
.10.1007/s40430-019-1664-4
16.
Krishna
,
P. M.
,
Sandeep
,
N.
, and
Sharma
,
R. P.
,
2017
, “
Computational Analysis of Plane and Parabolic Flow of Mhd Carreau Fluid With Buoyancy and Exponential Heat Source Effects
,”
Eur. Phys. J. Plus.
,
132
(
5
), pp.
1
15
.10.1140/epjp/i2017-11469-9
17.
Machireddy
,
G. R.
, and
Naramgari
,
S.
,
2018
, “
Heat and Mass Transfer in Radiative Mhd Carreau Fluid With Cross Diffusion
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1189
1204
.10.1016/j.asej.2016.06.012
18.
Ali
,
U.
,
Malik
,
M. Y.
,
Rehman
,
K. U.
, and
Alqarni
,
M. S.
,
2020
, “
Exploration of Cubic Autocatalysis and Thermal Relaxation in a Non-Newtonian Flow Field With MHD Effects
,”
Phys. A
,
549
, p.
124349
.10.1016/j.physa.2020.124349
19.
Ali
,
U.
,
Rehman
,
K. U.
, and
Malik
,
M. Y.
,
2020
, “
Thermal Energy Statistics for Jeffery Fluid Flow Regime: A Generalized Fourier's Law Outcomes
,”
Phys. A
,
542
, p.
123428
.10.1016/j.physa.2019.123428
20.
Abegunrin
,
O. A.
,
Animasaun
,
I. L.
, and
Sandeep
,
N.
,
2018
, “
Insight Into the Boundary Layer Flow of Non-Newtonian Eyring-Powell Fluid Due to Catalytic Surface Reaction on an Upper Horizontal Surface of a Paraboloid of Revolution
,”
Alex. Eng. J.
,
57
(
3
), pp.
2051
2060
.10.1016/j.aej.2017.05.018
21.
Ali
,
U.
,
Malik
,
M. Y.
,
Alderremy
,
A. A.
,
Aly
,
S.
, and
Rehman
,
K. U.
,
2020
, “
A Generalized Findings on Thermal Radiation and Heat Generation/Absorption in Nanofluid Flow Regime
,”
Phys. A
,
553
, p.
124026
.10.1016/j.physa.2019.124026
22.
Ali
,
U.
,
Alqahtani
,
A. S.
,
Rehman
,
K. U.
, and
Malik
,
M. Y.
,
2019
, “
On Cattaneo-Christov Heat Flux Analysis With Magneto-Hydrodynamic and Heat generation Effects in a Carreau Nano-Fluid Over a Stretching Sheet
,”
Rev. Mex. Fis.
,
65
, pp.
479
488
.10.31349/RevMexFis.65.479
23.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2010
, “
Mhd Mixed Convection From a Vertical Plate Embedded in a Porous Medium With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1813
1820
.10.1016/j.ijthermalsci.2010.05.015
24.
Hayat
,
T.
,
Qayyum
,
S.
,
Waqas
,
M.
, and
Ahmed
,
B.
,
2017
, “
Influence of Thermal Radiation and Chemical Reaction in Mixed Convection Stagnation Point Flow of Carreau Fluid
,”
Results Phys.
,
7
, pp.
4058
4064
.10.1016/j.rinp.2017.10.018
25.
Mahdy
,
A.
,
2010
, “
Soret and Dufour Effect on Double Diffusion Mixed Convection From a Vertical Surface in a Porous Medium Saturated With a Non-Newtonian Fluid
,”
J. Non-Newton Fluid Mech.
,
165
(
11–12
), pp.
568
575
.10.1016/j.jnnfm.2010.02.013
26.
Olajuwon
,
I. B.
,
2011
, “
Convection Heat and Mass Transfer in a Hydromagnetic Carreau Fluid Past a Vertical Porous Plate in a Presence of Thermal Radiation and Thermal Diffusion
,”
Therm. Sci.
,
15
(
Suppl. 2
), pp.
241
252
.10.2298/TSCI101026060O
27.
Alloui
,
Z.
, and
Vasseur
,
P.
,
2015
, “
Natural Convection of Carreau-Yasuda Non-Newtonian Fluids in a Vertical Cavity Heated From the Sides
,”
Int. J. Heat Mass Transfer
,
84
, pp.
912
924
.10.1016/j.ijheatmasstransfer.2015.01.092
28.
Elmaboud
,
Y. A.
,
Mekheimer
,
K. S.
, and
Mohamed
,
M. S.
,
2015
, “
Series Solution of a Natural Convection Flow for a Carreau Fluid in a Vertical Channel With Peristalsis
,”
J. Hydrodynam. B
,
27
(
6
), pp.
969
979
.10.1016/S1001-6058(15)60559-5
29.
Anzelius
,
A.
,
1926
, “
Uber Erwarmung Vermittels Durchstromender Medien
,”
J. Appl. Math. Mech.
,
6
(
4
), pp.
291
294
.10.1002/zamm.19260060404
30.
Schumann
,
T. E. W.
,
1929
, “
Heat Transfer: A Liquid Owing Through a Porous Prism
,”
J. Franklin Inst.
,
208
(
3
), pp.
405
416
.10.1016/S0016-0032(29)91186-8
31.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
, 4th ed.,
Springer
,
New York
.10.1007/978-1-4614-5541-7
32.
Kuznetsov
,
A. V.
,
1988
, “
Thermal Nonequilibrium Forced Convection in Porous Media
,”
Transp. Pheno. Porous Media. Ed. D. B. Ingham and I. Pop,
pp.
103
129
.
33.
Rees
,
D. A. S.
,
2003
, “
Vertical Free Convective Boundary-Layer Flow in a Porous Medium Using a Thermal Nonequilibirium Model: Elliptical Effects
,”
ZAMP
,
54
, pp.
437
448
.10.1007/s00033-003-0032-4
34.
Rees
,
D. A. S.
, and
Pop
,
I.
,
2005
, “
Local Thermal Non-Equlibirium in Porous Medium Convection
,”
Transp. Pheno. Porous Media III
, pp.
147
173
.10.1016/B978-008044490-1/50010-7
35.
Shenoy
,
A. V.
,
1993
, “
Darcy-Forchheimer Natural, Forced and Mixed Convection Heat Transfer in Non-Newtonian Power-Law Fluid-Saturated Porous Media
,”
Transp. Porous Media.
,
11
(
3
), pp.
219
241
.10.1007/BF00614813
36.
Narasimhan
,
A.
,
2012
,
Essentials of Heat and Fluid in Porous Media
,
Ane Books
,
New Delhi, India
.
37.
Riley
,
N.
, and
Weidman
,
P. D.
,
1989
, “
Multiple Solutions of the Falkner-Skan Equation for a Flow Past a Stretching Boundary
,”
SIAM J. Appl. Math.
,
49
(
5
), pp.
1350
1358
.10.1137/0149081
38.
Sachdev
,
P. L.
,
Kudenatti
,
R. B.
, and
Bujurke
,
N. M.
,
2007
, “
Exact Analytic Solution of a Boundary Value Problem for the Falkner-Skan Equation
,”
Stud. Appl. Math.
,
120
(
1
), pp.
1
16
.10.1111/j.1467-9590.2007.00386.x
39.
Kudenatti
,
R. B.
,
Sandhya
,
L.
, and
Bujurke
,
N. M.
,
2021
, “
Numerical Study on Magnetohydrodynamic Boundary Layer Flow of the Carreau Fluid in a Porous Medium: The Chebyshev Collocation Method
,”
Eng Comput.
, pp.
1
22
.10.1007/s00366-020-01222-5
40.
Nandi
,
S.
, and
Kumbhakar
,
B.
,
2020
, “
Navier's Slip Effect on Carreau Nanouid Flow Past a Convectively Heated Wedge in the Presence of Nonlinear Thermal Radiation and Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104813
.10.1016/j.icheatmasstransfer.2020.104813
41.
Khan
,
M.
,
Huda
,
N. U.
, and
Hamid
,
A.
,
2019
, “
Non-Linear Radiative Heat Transfer Analysis During the Flow of Carreau Nanofluid Due to Wedge-Geometry: A Revised Model
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1022
1031
.10.1016/j.ijheatmasstransfer.2018.10.140
42.
Rosali
,
H.
,
Ishak
,
A.
, and
Pop
,
I.
,
2016
, “
Mixed Convection Boundary Layer Flow Near the Lower Stagnation Point of a Cylinder Embedded in a Porous Medium Using a Thermal Nonequilibrium Mode
,”
ASME J. Heat Transfer
,
138
(
8
), p.
084501
.10.1115/1.4033164
You do not currently have access to this content.