Abstract

Studies on isothermal steady-state frictional pressure drop for flow of petroleum base oils SN70, SN150, diesel, and water are carried out in spiral coils with diameter to length ratio, 0.00042, 0.00047, 0.00073, 0.00164, 0.00189, 0.003, and 0.0037. An attempt is made to correlate friction factors with a better and more appropriate dimensionless group for flow of Newtonian fluids through spiral-coiled tubes. An innovative approach of correlating heat transfer data with the newly established dimensionless group is presented. Heat transfer experiments are performed for spiral coils with diameter to length ratio 0.000474, 0.00042, 0.001896, 0.00198, 0.000942, and 0.00164 in laminar flow regime. Suitable correlations for friction factors and Nusselt numbers are proposed. Relationship between pressure drop and heat transfer is studied. The incapability of the conventional analogy equations to estimate the heat and momentum transfer coefficients for laminar flow through straight or curved tubes is explained based on the viscous and form drag existing in straight and curved pipe flow. The limitations of the existing analogy equations are examined critically. A new general analogy equation is derived for laminar flow through spiral and straight tubes considering the influencing geometrical parameters of the tube.

References

1.
Shah
,
R. K.
, and
Joshi
,
S. D.
,
1987
, “
Convective Heat Transfer in Curved Ducts
,”
A Handbook of Single Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
, and
W.
Aung
, eds., John Wiley & Sons, NJ, pp.
5.1
5.45
.http://www.gbv.de/dms/ilmenau/toc/025544713.PDF
2.
Kubair
,
V.
, and
Kuloor
,
N. R.
,
1966
, “
Heat Transfer to Newtonian Fluids in Coiled Pipes in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
9
(
1
), pp.
63
75
.10.1016/0017-9310(66)90057-3
3.
Thompson
,
J.
,
1876
, “
On the Origin of Windings of Rivers in Alluvial Plains, With Remarks on the Flow of Water Round Bends in Pipes
,”
Proc. R. Soc. A
,
25
, pp.
5
8
.10.1098/rspl.1876.0004
4.
Williams
,
G. S.
,
Hubbell
,
C. W.
, and
Fenkel
,
G. H.
,
1902
, “
On the Effect of Curvature of the Flow of Water Pipes
,”
Trans. Am. Soc. Civ. Eng.
,
47
(
1
), pp.
1
196
.10.1061/TACEAT.0001496
5.
Grindley
,
J. H.
, and
Gibson
,
A. H.
,
1908
, “
On the Frictional Resistance to the Flow of Air Through a Pipe
,”
Proc. R. Soc. A
,
80
, pp.
114
139
.
6.
Eustice
,
J.
,
1910
, “
Flow of Water in Curved Pipes
,”
Proc. R. Soc. A
,
84
, pp.
107
118
.
7.
Eustice
,
J.
,
1911
, “
Experiments of Streamline Motion in Curved Pipes
,”
Proc. R. Soc. A
,
85
, pp.
119
131
.10.1098/rspl.1911.0026
8.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
9.
Dean
,
W. R.
,
1928
, “
The Stream-Line Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
5
(
30
), pp.
673
695
.10.1080/14786440408564513
10.
Topakoglu
,
H. C.
,
1967
, “
Steady State Laminar Flow in Incompressible Viscous Fluid in Curved Pipes
,”
J. Appl. Math. Mech.
,
16
(
12
), pp.
1321
1338
.
11.
White
,
C. M.
,
1929
, “
Streamline Flow Through Curved Pipes
,”
Proc. R. Soc. A
,
123
, pp.
645
663
.
12.
Adler
,
M.
,
1934
, “
Flow in Curved Tubes
,”
Z. Angew. Math. Mech.
,
14
(
5
), pp.
257
275
.10.1002/zamm.19340140502
13.
Prandtl
,
L.
,
1954
,
Essentials of Fluid Dynamics
,
Blackie and Son
,
London
, p.
168
.
14.
Hasson
,
D.
,
1955
, “
Streamline Flow Resistance in Coils
,”
Res. Corresp.
,
1
, p.
S1
.
15.
Ito
,
H.
,
1969
, “
Laminar Flow in Curved Pipes
,”
Z. Angew. Math. Mech.
,
11
, pp.
653
663
.
16.
Kubair
,
V.
, and
Varrier
,
C. B. S.
,
1961–1962
, “
Pressure Drop for Liquid Flow in Helical Coils
,”
Trans. Indian Inst. Chem. Eng.
,
14
, pp.
93
97
.
17.
Mishra
,
P.
, and
Gupta
,
S. N.
,
1979
, “
Momentum Transfer in Curved Pipes. 1. Newtonian Fluids
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp.
130
137
.10.1021/i260069a017
18.
Mishra
,
P.
, and
Gupta
,
S. N.
,
1979
, “
Momentum Transfer in Curved Pipes. 2. Non-Newtonian Fluids
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp.
137
142
.10.1021/i260069a018
19.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1981
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1–6
), pp.
185
200
.10.1080/00986448108911023
20.
Tarbell
,
J. M.
, and
Samuels
,
M. R.
,
1973
, “
Momentum and Heat Transfer in Helical Coils
,”
Chem. Eng. J.
,
5
(
2
), pp.
117
127
.10.1016/0300-9467(73)80002-4
21.
Naphon
,
P.
, and
Suwagrai
,
J.
,
2006
, “
Effect of Curvature Ratios on the Heat Transfer and Flow Developments in the Horizontal Spirally Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
444
451
.10.1016/j.ijheatmasstransfer.2006.08.002
22.
Pimenta
,
T. A.
, and
Campos
,
J. B. L. M.
,
2012
, “
Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
194
204
.10.1016/j.expthermflusci.2011.09.013
23.
Hart
,
J.
,
Ellenberger
,
J.
, and
Hamersma
,
P. J.
,
1988
, “
Single- and Two-Phase Flow Through Helically Coiled Tubes
,”
Chem. Eng. Sci.
,
43
(
4
), pp.
775
783
.10.1016/0009-2509(88)80072-1
24.
Altaç
,
Z.
, and
Altun
,
Ö.
,
2014
, “
Hydrodynamically and Thermally Developing Laminar Flow in Spiral Coil Tubes
,”
Int. J. Therm. Sci.
,
77
, pp.
96
107
.10.1016/j.ijthermalsci.2013.10.020
25.
Ghobadi
,
M.
, and
Muzychka
,
Y. S.
,
2016
, “
A Review of Heat Transfer and Pressure Drop Correlations for Laminar Flow in Curved Circular Ducts
,”
Heat Transfer Eng.
,
37
(
10
), pp.
815
839
.10.1080/01457632.2015.1089735
26.
Vashisth
,
S.
,
Kumar
,
V.
, and
Nigam
,
K. D. P.
,
2008
, “
A Review on Potential Applications of Curved Geometries in Process Industry
,”
Ind. Eng. Chem. Res.
,
47
(
10
), pp.
3291
3337
.10.1021/ie701760h
27.
Reynolds
,
O.
,
1874
, “
On the Extent and Action of the Heating Surface for Steam Boilers
,”
Proc. Manchester Lit. Philos. Soc
.,
14
, pp.
7
12
.https://www.irphe.fr
28.
Colburn
,
A. P.
,
1933
, “
A Method of Correlating Forced Convection Heat Transfer Data and a Comparison With Fluid Friction
,”
Trans. AIChE
,
29
, pp.
174
210
.
29.
Churchill
,
S. W.
,
1977
, “
Comprehensive Correlating Equations for Heat, Mass and Momentum Transfer in Fully Developed Flow in Smooth Tubes
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
109
116
.10.1021/i160061a021
30.
Patil
,
R. H.
,
2019
, “
Fluid Flow and Heat Transfer Analogy for Laminar and Turbulent Flow Inside Spiral Tubes
,”
Int. J. Therm. Sci.
,
139
, pp.
362
375
.10.1016/j.ijthermalsci.2019.01.036
31.
Everts
,
M.
, and
Meyer
,
J. P.
,
2018
, “
Relationship Between Pressure Drop and Heat Transfer of Developing and Fully Developed Flow in Smooth Horizontal Circular Tubes in the Laminar, Transitional, Quasi-Turbulent and Turbulent Flow Regimes
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1231
1250
.10.1016/j.ijheatmasstransfer.2017.10.072
32.
Austin
,
L. R.
, and
Seader
,
J. D.
,
1973
, “
Fully Developed Viscous Flow in Coiled Pipes
,”
Am. Inst. Chem. Eng.
,
19
(
1
), pp.
85
94
.10.1002/aic.690190113
33.
Cioncolini
,
A.
, and
Santini
,
L.
,
2006
, “
An Experimental Investigation Regarding the Laminar to Turbulent Flow Transition in Helically Coiled Pipes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
367
380
.10.1016/j.expthermflusci.2005.08.005
34.
Dravid
,
A. N.
,
Smith
,
K. A.
,
Merrill
,
E. W.
, and
Brian
,
P. L. T.
,
1971
, “
Effect of Secondary Fluid Motion on Laminar Flow Heat Transfer in Helically Coiled Tubes
,”
AIChE J.
,
17
(
5
), pp.
1114
1122
.10.1002/aic.690170517
35.
Andrew
,
W. G.
, and
Williams
,
H. B.
,
1993
,
Applied Instrumentation in the Process Industries
, 3rd ed.,
Gulf Publicating Company, Elsevier Publication
,
Houston, TX
.
36.
Patil
,
R. H.
,
2018
, “
Isothermal Laminar Fluid Flow in Spiral Tube Coils
,”
Heat Mass Transfer
,
54
(
12
), pp.
3673
3693
.10.1007/s00231-018-2387-2
37.
Mujawar
,
B. A.
, and
Roa
,
M. R.
,
1978
, “
Flow of Non-Newtonian Fluids Through Helical Coils
,”
Ind. Eng. Chem. Process Des. Dev.
,
17
(
1
), pp.
22
27
.10.1021/i260065a005
38.
Pimenta
,
T. A.
, and
Campos
,
J. B. L. M.
,
2013
, “
Heat Transfer Coefficients From Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
676
690
.10.1016/j.ijheatmasstransfer.2012.10.078
39.
Srinivasan
,
P. S.
,
Nandapurkar
,
S. S.
, and
Holland
,
F. A.
,
1970
, “
Friction Factors for Coils
,”
Trans. Inst. Chem. Eng.
,
48
, pp.
TI56
TI61
.
40.
Kays
,
W. M.
,
1955
, “
Numerical Solutions for Laminar Flow Heat Transfer in Circular Tubes
,”
ASME J. Heat Transfer
,
77
, pp.
1265
1274
.
41.
Holman
,
J. P.
,
1989
,
Experimental Methods for Engineers
, 5th ed.,
McGraw-Hill
,
Singapore
, Chap.
3
.
You do not currently have access to this content.