Abstract

A thin, flexible plate electrode was adopted to generate both ionic wind and vibration in our previous study. The design contains a metal inductor placed next to the plate electrode so that it is attracted to vibrate by the induced electrostatic force. The resulting flow was used to enhance heat transfer. In this study, a numerical methodology is developed to unveil the flow structure induced by the corona discharge and electrode vibration. The oscillatory movement of the electrode is modeled as a cantilever beam vibrating at its first resonant mode. The electric and flow fields are solved by the finite volume methods (FVMs). It is shown that a jet-like flow is generated by the electric discharge. The oscillatory movement of the jet results in flat temperature profile in comparison with the corona only system. Owing to the unsteady characteristic, the jet strength is less strong than that without vibration. The calculated results are qualitatively in line with the experiments, though some considerable differences exist. It is found that the oscillatory flow brings about lower overall heat transfer effectiveness than that without vibration regardless of the corona voltage. On the contrary, experiments showed that heat transfer is enhanced at low corona voltages where the ionic wind is not so overwhelming. The disagreement is mainly attributed to the two-dimensional (2D) assumption made in the simulation. The experimental arrangement, the corona discharge, and the vortex flows resulted all are three-dimensional (3D). Therefore, 3D calculations become necessary.

References

1.
Seyed-Yagoobi
,
J.
,
2005
, “
Electrohydrodynamic Pumping of Dielectric Liquids
,”
J. Electrost.
,
63
(
6–10
), pp.
861
869
.10.1016/j.elstat.2005.03.047
2.
Darabi
,
J.
,
Rada
,
M.
,
Ohadi
,
M.
, and
Lawler
,
J.
,
2002
, “
Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
684
690
.10.1109/JMEMS.2002.805046
3.
Defoort
,
E.
,
Benard
,
N.
, and
Moreau
,
E.
,
2017
, “
Ionic Wind Produced by an Electro-Aerodynamic Pump Based on Corona and Dielectric Barrier Discharges
,”
J. Electrost.
,
88
, pp.
35
40
.10.1016/j.elstat.2017.01.021
4.
Moreau
,
E.
, and
Touchard
,
G.
,
2008
, “
Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges
,”
J. Electrost.
,
66
(
1–2
), pp.
39
44
.10.1016/j.elstat.2007.08.006
5.
Owsenek
,
B. L.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
1995
, “
Experimental Investigation of Corona Wind Heat Transfer Enhancement With a Heated Horizontal Flat Plate
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
309
315
.10.1115/1.2822522
6.
Kalman
,
H.
, and
Sher
,
E.
,
2001
, “
Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
265
282
.10.1016/S1359-4311(00)00038-7
7.
Gallandat
,
N.
,
Bonetto
,
F.
, and
Mayor
,
J. R.
,
2017
, “
Ionic Wind Heat Transfer Enhancement in Vertical Rectangular Channels: Experimental Study and Model Validation
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021005
.10.1115/1.4035291
8.
Ong
,
A. O.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2014
, “
Electrohydrodynamic Microfabricated Ionic Wind Pumps for Thermal Management Applications
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061703
.10.1115/1.4026807
9.
El-Khabiry
,
S.
, and
Colver
,
G. M.
,
1997
, “
Drag Reduction by a DC Corona Discharge Along an Electrically Conductive Flat Plate for Small Reynolds Number Flow
,”
Phys. Fluids
,
9
(
3
), pp.
587
599
.10.1063/1.869219
10.
Moreau
,
E.
,
Léger
,
L.
, and
Touchard
,
G.
,
2006
, “
Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity Up to 25 m/s
,”
J. Electrost.
,
64
(
3–4
), pp.
215
225
.10.1016/j.elstat.2005.05.009
11.
Artana
,
G.
,
Sosa
,
R.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2003
, “
Control of the Near-Wake Flow Around a Circular Cylinder With Electrohydrodynamic Actuators
,”
Exp. Fluids
,
35
(
6
), pp.
580
588
.10.1007/s00348-003-0704-z
12.
Magnier
,
P.
,
Hong
,
D.
,
Leroy-Chesneau
,
A.
,
Bauchire
,
J.-M.
, and
Hureau
,
J.
,
2007
, “
Control of Separated Flows With the Ionic Wind Generated by a DC Corona Discharge
,”
Exp. Fluids
,
42
(
5
), pp.
815
825
.10.1007/s00348-007-0297-z
13.
Go
,
D. B.
,
Garimella
,
S. V.
,
Fisher
,
T. S.
, and
Mongia
,
R. K.
,
2007
, “
Ionic Winds for Locally Enhanced Cooling
,”
J. Appl. Phys.
,
102
(
5
), p.
053302
.10.1063/1.2776164
14.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2008
, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6047
6053
.10.1016/j.ijheatmasstransfer.2008.05.012
15.
Shin
,
D. H.
,
Jang
,
D. K.
,
Sohn
,
D. K.
, and
Ko
,
H. S.
,
2019
, “
Control of Boundary Layer by Ionic Wind for Heat Transfer
,”
Int. J. Heat Mass Transfer
,
131
, pp.
189
195
.10.1016/j.ijheatmasstransfer.2018.11.058
16.
Fylladitakis
,
E. D.
,
Theodoridis
,
M. P.
, and
Moronis
,
A. X.
,
2014
, “
Review on the History, Research, and Applications of Electrohydrodynamics
,”
IEEE Trans. Plasma Sci.
,
42
(
2
), pp.
358
375
.10.1109/TPS.2013.2297173
17.
Johnson
,
M. J.
, and
Go
,
D. B.
,
2017
, “
Recent Advances in Electrohydrodynamic Pumps Operated by Ionic Winds: A Review
,”
Plasma Sources Sci. Technol.
,
26
(
10
), p.
103002
.10.1088/1361-6595/aa88e7
18.
Laohalertdecha
,
S.
,
Naphon
,
P.
, and
Wongwises
,
S.
,
2007
, “
A Review of Electrohydrodynamic Enhancement of Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
858
876
.10.1016/j.rser.2005.07.002
19.
Moreau
,
E.
,
2007
, “
Airflow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), pp.
605
636
.10.1088/0022-3727/40/3/S01
20.
Asakawa
,
Y.
,
1976
, “
Promotion and Retardation of Heat Transfer by Electric Fields
,”
Nature
,
261
(
5557
), pp.
220
221
.10.1038/261220a0
21.
Barthakur
,
N. N.
, and
Bhartendu
,
S.
,
1988
, “
Enhancement of Evaporation Rates From Thin Layers of Liquids Exposed to Air Ions
,”
Int. J. Biometeorol.
,
32
(
3
), pp.
163
167
.10.1007/BF01045274
22.
Singh
,
A.
,
Orsat
,
V.
, and
Raghavan
,
V.
,
2012
, “
A Comprehensive Review on Electrohydrodynamic Drying and High-Voltage Electric Field in the Context of Food and Bioprocessing
,”
Drying Technol.
,
30
(
16
), pp.
1812
1820
.10.1080/07373937.2012.708912
23.
Acikalin
,
T.
,
Garimella
,
S. V.
,
Petroski
,
J.
, and
Raman
,
A.
,
2004
, “
Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes
,”
Proceedings of the Intersociety Conference on Thermal Phenomena
, Las Vegas, NV, June 1–4, pp.
663
671
.10.1109/ITHERM.2004.1319239
24.
Kimber
,
M.
,
Garimella
,
S. V.
, and
Raman
,
A.
,
2007
, “
Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1168
1176
.10.1115/1.2740655
25.
Kimber
,
M.
, and
Garimella
,
S. V.
,
2009
, “
Cooling Performance of Arrays of Vibrating Cantilevers
,”
ASME J. Heat Transfer
,
131
(
11
), p.
111401
.10.1115/1.3153579
26.
Gilson
,
G. M.
,
Pickering
,
S. J.
,
Hann
,
D. B.
, and
Gerada
,
C.
,
2013
, “
Piezoelectric Fan Cooling: A Novel High Reliability Electric Machine Thermal Management Solution
,”
IEEE Trans. Ind. Electron.
,
60
(
11
), pp.
4841
4851
.10.1109/TIE.2012.2224081
27.
Hales
,
A.
, and
Jiang
,
X.
,
2018
, “
A Review of Piezoelectric Fans for Low Energy Cooling of Power Electronics
,”
Appl. Energy
,
215
, pp.
321
337
.10.1016/j.apenergy.2018.02.014
28.
Tsui
,
Y.-Y.
,
Huang
,
Y.-X.
,
Lan
,
C.-C.
, and
Wang
,
C.-C.
,
2017
, “
A Study of Heat Transfer Enhancement Via Corona Discharge by Using a Plate Corona Electrode
,”
J. Electrost.
,
87
, pp.
1
10
.10.1016/j.elstat.2017.02.003
29.
Tsui
,
Y.-Y.
,
Wei
,
T.-K.
, and
Wang
,
C.-C.
,
2020
, “
A Novel Means Combining Corona Discharge and Electrostatic Force-Induced Vibration for Convective Heat Transfer
,”
ASME J. Heat Transfer
,
142
(
8
), p.
082102
.10.1115/1.4046971
30.
Hung
,
E. S.
, and
Senturia
,
S. D.
,
1999
, “
Extending the Travel Range of Analog-Tuned Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
8
(
4
), pp.
497
505
.10.1109/84.809065
31.
Fargas-Marques
,
A.
,
Casals-Terre
,
J.
, and
Shkel
,
A. M.
,
2007
, “
Resonant Pull-In Condition in Parallel-Plate Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1044
1053
.10.1109/JMEMS.2007.900893
32.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-In Instability in MEMS/NEMS: A Review
,”
Sens. Actuators A: Phys.
,
214
, pp.
187
218
.10.1016/j.sna.2014.04.025
33.
Caruntu
,
D. I.
, and
Knecht
,
M. W.
,
2015
, “
Microelectromechanical Systems Cantilever Resonators Under Soft Alternating Current Voltage of Frequency Near Natural Frequency
,”
ASME J. Dyn. Syst., Meas., Control
,
137
, p.
041016
.10.1115/1.4028887
34.
Pallay
,
M.
,
Daeichin
,
M.
, and
Towfighian
,
S.
,
2017
, “
Dynamic Behavior of an Electrostatic MEMS Resonator With Repulsive Actuation
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1525
1538
.10.1007/s11071-017-3532-z
35.
Molki
,
M.
,
Harirchian
,
T.
, and
Chitta
,
V. L.
,
2006
, “
An Improved Solution of Electrodynamics Equations for Corona Discharge Using Explicit Artificial Viscosity
,”
Numer. Heat Transfer, Part B
,
50
(
4
), pp.
315
332
.10.1080/10407790600604817
36.
Lakeh
,
R. B.
, and
Molki
,
M.
,
2010
, “
Patterns of Airflow in Circular Tubes Caused by a Corona Jet With Concentric and Eccentric Wire Electrodes
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081201
.10.1115/1.4002008
37.
Dumitran
,
L. M.
,
Atten
,
P.
,
Notingher
,
P. V.
, and
Dascalescu
,
L.
,
2006
, “
2-D Corona Field Computation in Configurations With Ionising and Non-Ionising Electrodes
,”
J. Electrost.
,
64
(
3–4
), pp.
176
186
.10.1016/j.elstat.2005.05.005
38.
Adamiak
,
K.
, and
Atten
,
P.
,
2004
, “
Simulation of Corona Discharge in Point-Plane Configuration
,”
J. Electrost.
,
61
(
2
), pp.
85
98
.10.1016/j.elstat.2004.01.021
39.
Butler
,
A. J.
,
Cendes
,
Z. J.
, and
Hoburg
,
J. F.
,
1989
, “
Interfacing the Finite Element Method With the Method of Characteristics in Self-Consistent Electrostatic Field Models
,”
IEEE Trans. Ind. Appl.
,
25
(
3
), pp.
533
538
.10.1109/28.31225
40.
Tsui
,
Y.-Y.
,
Huang
,
Y.-C.
,
Huang
,
C.-L.
, and
Lin
,
S.-W.
,
2013
, “
A Finite Volume Based Approach for Dynamic Fluid-Structure Interaction
,”
Numer. Heat Transfer, Part B
,
64
(
4
), pp.
326
349
.10.1080/10407790.2013.806691
41.
Royster
,
W. C.
, and
Conte
,
S. D.
,
1956
, “
Convergence of Finite Difference Solutions to a Solution of the Equation of the Vibrating Rod
,”
Proc. Am. Math. Soc.
,
7
(
4
), pp.
742
749
.10.1090/S0002-9939-1956-0078569-2
42.
Rao
,
S. S.
,
1995
,
Mechanical Vibrations
, 3rd ed.,
Addison-Wesley
,
Reading, MA
.
43.
Wei
,
T.-K.
,
2018
, “
Experimental Analysis and Numerical Simulation of a Novel Heat Transfer Enhancement Method Combining Corona Wind and Electrostatic Vibration
,” MS thesis,
National Chaio Tung University
, Hsinchu, Taiwan.
44.
Tsui
,
Y.-Y.
, and
Pan
,
Y.-F.
,
2006
, “
A Pressure-Correction Method for Incompressible Flows Using Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
49
(
1
), pp.
43
65
.10.1080/10407790500344084
45.
Tsui
,
Y.-Y.
, and
Wu
,
T.-C.
,
2008
, “
A Pressure-Based Unstructured-Grid Algorithm Using High Resolution Schemes for All-Speed Flows
,”
Numer. Heat Transfer, Part B
,
53
(
1
), pp.
75
96
.10.1080/10407790701632493
46.
Kaptzov
,
N.
,
1947
,
Elektricheskiye Yavleniya v Gazakh i Vacuume (Electrical Phenomena in Gases and Vacuum)
,
Ogiz
,
Moscow, Russia
, pp.
587
630
.
47.
Peek
,
F. W.
,
1929
,
Dielectric Phenomena in High Voltage Engineering
,
McGraw-Hill
,
New York
.
48.
Tsui
,
Y.-Y.
, and
Wang
,
C.-K.
,
1995
, “
Calculation of Laminar Separated Flows in Symmetric Two-Dimensional Diffusers
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
612
616
.10.1115/1.2817311
You do not currently have access to this content.