Abstract

Using particle image velocimetry (PIV), the amount of fluid required to sustain nucleate boiling was quantified to a microstructured copper circular disk. Having prepared the disk with preferential nucleation sites, an analytical model of the net coolant flow rate requirements to a single site has been produced and validated against experimental data. The model assumes that there are three primary phenomena contributing to the coolant flow rate requirements at the boiling surface; radial growth of vapor throughout incipience to departure, bubble rise, and natural convection around the periphery. The total mass flow rate is the sum of these contributing portions. The model accurately predicts the quenching fluid flow rate at low and high heat fluxes with 4% and 30% error of the measured value, respectively. For the microstructured surface examined in this study, coolant flow rate requirements ranged from 0.1 to 0.16 kg/s for a range of heat fluxes from 5.5 to 11.0 W/cm2. Under subcooled conditions, the coolant flow rate requirements plummeted to a nearly negligible value due to domination of transient conduction as the primary heat transfer mechanism at the liquid/vapor/surface interface. PIV and the validated analytical model could be used as a test standard where the amount of coolant the surface needs in relation to its heat transfer coefficient or thermal resistance is a benchmark for the efficacy of a standard surface or boiling enhancement coating/surface structure.

References

1.
Nukiyama
,
S.
,
1966
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
(translated in 1966).10.1016/0017-9310(66)90138-4
2.
Han
,
C.
, and
Griffith
,
P.
,
1962
, “
The Mechanism of Heat Transfer in Nucleate Boiling
,” Department of Mechanical Engineering, Massachusetts Institute of Technology, The office of Naval Research, Report No.
7673–19.
https://core.ac.uk/download/pdf/4425969.pdf
3.
Kurul
,
N.
, and
Podowski
,
M.
,
1990
, “
Multidimensional Effects in Forced Convection Subcooled Boiling
,”
Proceedings of the Ninth International Heat Transfer Conference
, Jerusalem, Israel, Aug. 19–24, pp.
21
25
.
4.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L-W.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4185
4192
.10.1016/j.ijheatmasstransfer.2010.05.041
5.
Teodori
,
E.
,
Moita
,
A. S.
, and
Moreira
,
A. L. N.
,
2013
, “
Evaluation of Pool Boiling Heat Transfer Over Micro-Structured Surfaces by Combining High-Speed Visualization and PIV Measurements
,”
Tenth International Symposium on Particle Image Velocimetry (PIV13)
, Delft, The Netherlands, Paper No. 2013-07-03.
6.
Harrison
,
M.
,
Moita
,
A.
, and
Gess
,
J.
,
2020
, “
Characterization of Net Coolant Flow Rate to Copper Boiling Surfaces Using Two-Phase Particle Image Velocimetry and Dielectric Fluid
,”
Heat Mass Transfer
,
56
(
6
), pp.
1811
1823
.10.1007/s00231-020-02812-1
7.
Sathe
,
M. J.
,
Thaker
,
I. J.
,
Strand
,
T. E.
, and
Joshi
,
J. B.
,
2010
, “
Advanced PIV/LIF and Shadowgraphy System to Visualize Flow Structure in Two-Phase Bubbly Flows
,”
Chem. Eng. Sci.
,
65
(
8
), pp.
2431
2442
.10.1016/j.ces.2009.11.014
8.
Nishimuar
,
T.
,
Inaba
,
S.
,
HIshida
,
K.
, and
Maeda
,
M.
,
2000
, “
Measurements of Flow around Inclined Jets by Stereoscopic PIV
,”
Proceedings of the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 10–13.
9.
Webster
,
D. R.
,
Roberts
,
P. J. W.
, and
Ra'ad
,
L.
,
2001
, “
Simultaneous DPTV/PLIF Measurements of a Turbulent Jet
,”
Exp. Fluids
,
30
(
1
), pp.
65
72
.10.1007/s003480000137
10.
Gandhi
,
M. S.
,
Sathe
,
M. J.
,
Joshi
,
J. B.
, and
Vijayan
,
P. K.
,
2011
, “
Two Phase Natural Convection: CFD Simulations and PIV Measurement
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3152
3171
.10.1016/j.ces.2011.02.060
11.
Bröder
,
D.
, and
Sommerfeld
,
M.
,
2002
, “
An Advanced LIF-PLV System for Analysing the Hydrodynamics in a Laboratory Bubble Column at Higher Void Fractions
,”
Exp. Fluids
,
33
(
6
), pp.
826
837
.10.1007/s00348-002-0502-z
12.
Delnoij
,
E.
,
Westerweel
,
J.
,
Deen
,
N. G.
,
Kuipers
,
J. A. M.
, and
van Swaaij
,
W. P. M.
,
1999
, “
Ensemble Correlation PIV Applied to Bubble Plumes Rising in a Bubble Column
,”
Chem. Eng. Sci.
,
54
(
21
), pp.
5159
5171
.10.1016/S0009-2509(99)00233-X
13.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2013
, “
Electrohydrodynamic Conduction Driven Single- and Two-Phase Flow in Microchannels With Heat Transfer
,”
ASME J. Heat Transfer
,
135
(
10
), p.
101701
.10.1115/1.4007617
14.
Voytkov
,
I. S.
,
Volkov
,
R. S.
, and
Strizhak
,
P. A.
,
2019
, “
Temperature and Velocity of the Gas–Vapor Mixture in the Trace of Several Evaporating Water Droplets
,”
ASME J. Heat Transfer
,
141
(
1
), p.
011502
.10.1115/1.4041556
15.
Volkov
,
R. S.
,
Piskunov
,
M. V.
,
Kuznetsov
,
G. V.
, and
Strizhak
,
P. A.
,
2016
, “
Water Droplet With Carbon Particles Moving Through High-Temperature Gases
,”
ASME J. Heat Transfer
,
138
(
1
), p.
014502
.10.1115/1.4031075
16.
Aguiar
,
G. M.
,
Voulgaropoulos
,
V.
,
Matar
,
O. K.
,
Markides
,
C. N.
, and
Bucci
,
M.
,
2019
, “
Experimental Investigation of Bubble Nucleation, Growth and Departure Using Synchronized IR Thermometry, Two-Color LIF and PIV
,”
18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18)
, Portland, Oregon, Aug. 18–23,.
17.
Voulgaropoulos
,
V.
,
Aguiar
,
G. M.
,
Matar
,
O. K.
,
Bucci
,
M.
, and
Markides
,
C. N.
,
2019
, “
Temperature and Velocity Field Measurements of Pool Boiling Using Two-Colour Laser-Induced Fluorescence, Infrared Thermometry and Particle Image Velocimetry
,”
Tenth International Conference on Multiphase Flow
, Rio de Janeiro, Brazil, May 19–24, pp.
285
293
.
18.
Banerjee
,
D.
, and
Dhir
,
V. K.
,
2001
, “
Study of Subcooled Film Boiling on a Horizontal Disc—Part 2: Experiments
,”
ASME J. Electron. Packag.
,
123
(
2
), pp.
285
293
.10.1115/1.1345890
19.
Gess
,
J.
,
Bhavnani
,
S.
, and
Wayne Johnson
,
R.
,
2016
, “
Single- and Two-Phase Particle Image Velocimetry Characterization of Fluid Flow Within a Liquid Immersion Cooled Electronics Module
,”
ASME J. Electron. Packag.
,
138
(
4
), p.
041007
.10.1115/1.4034854
20.
Harrison
,
M.
,
Moita
,
A. S.
, and
Gess
,
J.
,
2018
, “
A Novel Boiling Heat Transfer Thermal Efficiency Parameter for Microscale Finned Heat Sinks Using Two-Phase Particle Image Velocimetry
,”
19th International Symposium on Laser and Imaging Techniques to Fluid Mechanics
, Lisbon, Portugal, July 13–16.
21.
Moreno
,
G.
,
Narumanchi
,
S.
, and
King
,
C.
,
2013
, “
Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces
,”
ASME J Heat Transfer
,
135
(
11
), p.
111014
.10.1115/1.4024622
22.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3755
3764
.10.1016/S0017-9310(03)00215-1
23.
Sinha
,
G. K.
, and
Srivastava
,
A.
,
2021
, “
On the Development of Correlations for Bubble Liftoff Parameters during Subcooled Nucleate Flow Boiling Using Nonintrusive Dynamic Measurements
,”
ASME J. Heat Transfer
,
143
(
2
), p. 021602.10.1115/1.4048824
24.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p. 052902.10.1115/1.4003046
25.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and Griffith, P.,
1970
, “On
Bubble Growth Rates
,”
Int. J. Heat Mass Trans.
,
13
(
4
), pp.
657
666
.10.1016/0017-9310(70)90040-2
26.
Koumoutsos
,
N.
,
Moissis
,
R.
, and
Spyridonos
,
A.
,
1968
, “
A Study of Bubble Departure in Forced-Convection Boiling
,”
ASME J. Heat Transfer
,
90
(
2
), pp.
223
230
.10.1115/1.3597483
27.
Celata
,
G. P.
,
Cumo
,
M.
,
D'Annibale
,
F.
, and
Tomiyama
,
A.
,
2004
, “
The Wake Effect on Bubble Rising Velocity in One-Component Systems
,”
Int. J. Multiphase Flow
,
30
(
7–8
), pp.
939
961
.10.1016/j.ijmultiphaseflow.2004.04.007
28.
Pera
,
L.
, and
Gebhart
,
B.
,
1973
, “
Natural Convection Boundary Layer Flow Over Horizontal and Slightly Inclined Surfaces
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1131
1146
.10.1016/0017-9310(73)90126-9
29.
Kutaleladze
,
S. S.
, and
Gogonin
,
I. I.
,
1979
, “
Growth Rate and Detachment Diameter of Vapor Bubbles in Free Convection Boiling of a Saturated Liquid
,”
High Temp.
,
17
, pp.
667
671
.https://ui.adsabs.harvard.edu/abs/1979TepVT..17..792K/abstract
30.
Fritz
,
W.
,
1935
, “
Berechnung Des Maximalvolume Von Dampfblasen
,”
Phys. Z.
,
36
, pp.
379
388
.
31.
Zuber
,
N.
,
1959
,
Hydrodynamic Aspects of Boiling Heat Transfer (Thesis)
,
University of California/Ramo-Wooldridge Corp
,
Los Angeles, CA
.
32.
Cole
,
R.
,
1967
, “
Bubble Frequencies and Departure Volumes at Sub Atmospheric Pressures
,”
AlChE J.
,
13
(
4
), pp.
779
783
.10.1002/aic.690130434
33.
Cole
,
R.
, and
Rohsenow
,
W. M.
,
1968
, “
Correlation of Bubble Departure Diameters for Boiling of Saturated Liquids
,”
Chem. Eng. Prog. Symp. Ser.
,
65
(
92
), pp.
211
213
.
34.
Stephan
,
K.
,
1992
,
Heat Transfer in Condensation and Boiling
,
Spring-Verlag
,
New York
, Chap.
10
.
35.
Jensen
,
M. K.
, and
Memmel
,
G. J.
,
1986
, “
Evaluation of Bubble Departure Diameter Correlations
,”
Proceedings of Eighth International Heat Transfer Conference
, Vol.
4
, San Francisco, CA, Aug. 17–22, pp.
1907
1912
.
36.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2006
, “
Heat Transfer During Pool Boiling Based on Evaporation From Micro and Macrolayer
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3487
3499
.https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.050
37.
Hamzekhani
,
S.
,
Falahieh
,
M. M.
,
Kamalizadeh
,
M. R.
, and
Salmaninejad
,
M.
,
2015
, “
Bubble Dynamics for Nucleate Pool Boiling of Water, Ethanol and Methanol Pure Liquids Under the Atmospheric Pressure
,”
J. Appl. Fluid Mech.
,
8
(
4
), pp.
893
898
.http://jafmonline.net/JournalArchive/download?file_ID=37929&issue_ID=223
38.
Suszko
,
A.
, and
El-Genk
,
M. S.
,
2015
, “
Saturation Boiling of PF-5060 on Rough Cu Surfaces: Bubbles Transient Growth, Departure Diameter, and Detachment Frequency
,”
Int. J. Heat Mass Transfer
,
91
, pp.
363
373
.10.1016/j.ijheatmasstransfer.2015.07.083
39.
Acharya
,
A. R.
,
Pawar
,
P.
,
Kawale
,
D.
, and
Pise
,
A.
,
2017
, “
Single Bubble Dynamics Study During Nucleate Boiling
,” Int. J. Sci. Eng. Res., 8(4), pp.
65
68
.
40.
Kuo
,
C.-J.
,
Kosar
,
A.
,
Peles
,
Y.
,
Virost
,
S.
,
Mishra
,
C.
, and
Jensen
,
M. K.
,
2006
, “
Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,”
Microelectromech. Syst., J.
,
15
(
6
), pp.
1514
1527
.10.1109/JMEMS.2006.885975
41.
Tanjung
,
E. F.
,
Albdour
,
S. A.
,
Jeong
,
Y. U.
, and
Jo
,
D.
,
2020
, “
Critical Heat Flux (CHF) in Pool Boiling Under Static and Rolling Conditions
,”
Nucl. Eng. Technol.
,
52
(
3
), pp.
520
529
.10.1016/j.net.2019.08.005
42.
Peebles
,
F.
, and
Garber
,
H.
,
1953
, “
Studies on the Motion of Gas Bubbles in Liquids
,”
Chem. Eng. Prog.
,
49
(
2
), pp.
88
97
.
43.
McFadden
,
P.
, and
Grassmann
,
P.
,
1962
, “
The Relation Between Bubble Frequency and Diameter During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
5
(
3–4
), pp.
169
173
.10.1016/0017-9310(62)90009-1
44.
Malenkov
,
I. G.
,
1971
, “
Detachment Frequency as a Function of Size for Vapor Bubbles
,”
J. Eng. Phys.
,
20
(
6
), pp.
704
708
.10.1007/BF01122590
45.
Sadık
,
K.
,
1994
,
Cooling of Electronic Systems
,
Kluwer
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.