Abstract

Single-phase natural circulation thermosiphon loops have been attracting increased interest as they represent the prototype of passive safety systems. However, the stability properties of thermosiphon loops, which can affect and compromise their functionality, are still actively investigated. Traditionally, the stability analysis of thermosiphon loops has been simplified to one-dimensional (1D) calculations, on the argument that the flow would be monodimensional when the diameter of the pipe D is orders of magnitude smaller than the length of the loop Lt. However, at lower Lt/D ratios, rectangular thermosiphon loops show that the flow presents three-dimensional (3D) effect, which also has been confirmed by stability analyses in toroidal loops. In this paper, we performed a series of high-fidelity simulations using the spectral-element code nek5000 to investigate the stability behavior of the flow in rectangular thermosiphon loops. A wide range of Lt/D ratio from 10 to 200 has been considered, and the results show many different outcomes compared to previous 1D analytical calculations or stability theory. Moreover, we analyzed the flow in rectangular thermosiphon loops using proper orthogonal decomposition (POD), and we observed that the cases without flow reversal are characterized by swirl modes typical of bent pipes and high-frequency oscillation of the related time coefficients obtained by Galerkin projection. However, the swirl mode was not observed in cases with flow reversals, and these cases are characterized by symmetric flow field at second POD mode and the similarity of low-frequency oscillation in the projection of POD modes.

References

1.
Vijayan
,
P. K.
,
2002
, “
Experimental Observations on the General Trends of the Steady State and Stability Behaviour of Single-Phase Natural Circulation Loops
,”
Nucl. Eng. Des.
,
215
(
1–2
), pp.
139
152
.10.1016/S0029-5493(02)00047-X
2.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2008
, “
An Experimental Investigation of Single-Phase Natural Circulation Behavior in a Rectangular Loop With Al2O3 Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
184
189
.10.1016/j.expthermflusci.2008.07.017
3.
Burroughs
,
E. A.
,
Coutsias
,
E. A.
, and
Romero
,
L. A.
,
2005
, “
A Reduced-Order Partial Differential Equation Model for the Flow in a Thermosyphon
,”
J. Fluid Mech.
,
543
(
1
), pp.
203
237
.10.1017/S0022112005006361
4.
Jiang
,
Y. Y.
,
Shoji
,
M.
, and
Naruse
,
M.
,
2002
, “
Boundary Condition Effects on Flow Stability in a Toroidal Thermosyphon
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
81
91
.10.1016/S0142-727X(01)00141-2
5.
Welander
,
P.
,
1967
, “
On the Oscillatory Instability of a Differentially Heated Fluid Loop
,”
J. Fluid Mech.
,
29
(
1
), pp.
17
30
.10.1017/S0022112067000606
6.
Vijayan
,
P. K.
, and
Austregesilo
,
H.
,
1994
, “
Scaling Laws for Single-Phase Natural Circulation Loops
,”
Nucl. Eng. Des.
,
152
(
1–3
), pp.
331
347
.10.1016/0029-5493(94)90095-7
7.
Cammarata
,
L.
,
Fichera
,
A.
, and
Pagano
,
A.
,
2003
, “
Stability Maps for Rectangular Circulation Loops
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
965
977
.10.1016/S1359-4311(03)00027-9
8.
Sano
,
O.
,
1991
, “
Cellular Structure in a Natural Convection Loop and Its Chaotic Behavior, 1: Experiment
,”
Fluid Dyn. Res.
,
8
(
5–6
), pp.
189
204
.10.1016/0169-5983(91)90042-H
9.
Merzari
,
E.
,
Fischer
,
P.
, and
Ninokata
,
H.
,
2011
, “
Numerical Simulation of the Flow in a Toroidal Thermosiphon
,”
ASME
Paper No. AJK2011-03084.10.1115/AJK2011-03084
10.
Luzzi
,
L.
,
Misale
,
M.
,
Devia
,
F.
,
Pini
,
A.
,
Cauzzi
,
M. T.
,
Fanale
,
F.
, and
Cammi
,
A.
,
2017
, “
Assessment of Analytical and Numerical Models on Experimental Data for the Study of Single-Phase Natural Circulation Dynamics in a Vertical Loop
,”
Chem. Eng. Sci.
,
162
, pp.
262
283
.10.1016/j.ces.2016.12.058
11.
Misale
,
M.
,
2016
, “
Experimental Study on the Influence of Power Steps on the Thermohydraulic Behavior of a Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
99
, pp.
782
791
.10.1016/j.ijheatmasstransfer.2016.04.036
12.
Misale
,
M.
, and
Devia
,
F.
,
2012
, “
Analysis of the Effects of Heat Sink Temperature on Single-Phase Natural Circulation Loops Behavior
,”
Int. J. Therm. Sci.
,
59
, pp.
195
202
.10.1016/j.ijthermalsci.2012.03.006
13.
Fischer
,
P.
,
Kerkemeier
,
S.
,
Peplinski
,
A.
,
Shaver
,
D.
,
Tomboulides
,
A.
,
Min
,
M.
,
Obabko
,
A.
, and
Merzari
,
E.
,
2015
, “
Nek5000 17.0 User Guide
,” Argonne National Laboratory, Lemont, IL.
14.
Nguyen
,
T.
, and
Merzari
,
E.
,
2020
, “
Computational Fluid Dynamics Simulation of a Single-Phase Rectangular Thermosiphon
,”
ASME
Paper No. ICONE2020-16934.10.1115/ICONE2020-16934
15.
Nguyen
,
T.
, and
Merzari
,
E.
,
2020
, “
On the Effect of the Aspect Ratio on the Stability of Single-Phase Rectangular Thermosiphons
,”
ANS Annual Meeting
, online, Nov., pp.
1693
1696
.
16.
Misale
,
M.
, and
Frogheri
,
M.
,
1999
, “
Influence of Pressure Drops on the Behavior of Single-Phase Natural Circulation Loop: Preliminary Results
,”
Int. Commun. Heat Mass Transfer
,
26
(
5
), pp.
597
606
.10.1016/S0735-1933(99)00046-9
17.
Misale
,
M.
, and
Frogheri
,
M.
,
2001
, “
Stabilization of a Single-Phase Natural Circulation Loop by Pressure Drops
,”
Exp. Therm. Fluid Sci.
,
25
(
5
), pp.
277
282
.10.1016/S0894-1777(01)00075-9
18.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G., eds.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511622700
19.
Trefethen
,
L. N.
, and
Bau
,
D.
,
1997
,
Numerical Linear Algebra
, Society for Industrial and Applied Mathematics (
SIAM)
, Philadelphia, PA.
20.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
570
.10.1090/qam/910462
21.
Noorani
,
A.
, and
Schlatter
,
P.
,
2016
, “
Swirl-Switching Phenomenon in Turbulent Flow Through Toroidal Pipes
,”
Int. J. Heat Fluid Flow
,
61
, pp.
108
116
.10.1016/j.ijheatfluidflow.2016.05.021
22.
Hufnage
,
L.
,
Canton
,
J.
,
Orlu
,
R.
,
Marin
,
O.
,
Merzari
,
E.
, and
Schlatter
,
P.
,
2018
, “
The Three-Dimensional Structure of Swirl-Switching in Bent Pipe Flow
,”
J. Fluid Mech.
,
835
, pp.
86
101
.10.1017/jfm.2017.749
23.
Lai
,
J. K.
,
Busco
,
G.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2019
, “
Direct Numerical Simulation of the Flow in a Bare Rod Bundle at Different Prandtl Numbers
,”
ASME J. Heat Transfer
,
141
(
12
), p.
121702
.10.1115/1.4044832
24.
Offermans
,
N.
,
Marin
,
O.
,
Schanen
,
M.
,
Gong
,
J.
,
Fischer
,
P.
,
Schlatter
,
P.
,
Obabko
,
A.
,
Peplinkski
,
A.
,
Hutchinson
,
M.
, and
Merzari
,
E.
,
2016
, “
On the Strong Scaling of the Spectral Element Solver Nek5000 on Petascale Systems
,” The Exascale Applications and Software Conference, Stockholm, Sweden, Apr., pp.
1
10
.10.1145/2938615.2938617
25.
Fischer
,
P.
,
Heisey
,
K.
, and
Min
,
M.
,
2015
, “
Scaling Limits for PDE-Based Simulation (Invited)
,”
AIAA
Paper No. 2015-3049.10.2514/6.2015-3049
26.
Lottes
,
J.
, and
Fischer
,
P.
,
2005
, “
Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method
,”
J. Sci. Comput.
,
24
(
1
), pp.
45
78
.10.1007/s10915-004-4787-3
27.
Merzari
,
E.
,
Pointer
,
W. D.
, and
Fischer
,
P.
,
2013
, “
Numerical Simulation and Proper Orthogonal Decomposition in a Counter-Flow T-Junction
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091304
.10.1115/1.4024059
28.
Obabko
,
A.
,
Fischer
,
P.
, and
Tautges
,
T.
,
2011
, “
CFD Validation in OECD/NEA T-Junction Benchmark
,” Argonne National Laboratory, Argonne, IL, Technical Report No.
ANL/NE-11/25
.https://publications.anl.gov/anlpubs/2011/08/70802.pdf#:~:text=modeling%20and%20simulation%20community%20to,purpose%20%5B19%2C22%5D.
29.
Fischer
,
P.
, and
Mullen
,
J.
,
2001
, “
Filter-Based Stabilization of Spectral Element Methods
,”
C. R. Acad. Sci., Ser. I: Math.
,
332
(
3
), pp.
265
270
.10.1016/S0764-4442(00)01763-8
30.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
31.
Borreani
,
W.
,
Chersola
,
D.
,
Lomonaco
,
G.
, and
Misale
,
M.
,
2017
, “
Assessment of a 2D CFD Model for a Single-Phase Natural Circulation Loop
,”
Int. J. Heat Technol.
,
35
(
Special Issue 1
), pp.
S300
S306
.10.18280/ijht.35Sp0141
32.
Tolstov
,
G. P.
,
1960
,
Fourier Series
,
State Publishing House of Physical and Mathematical Literature
,
Moscow, Russia
.
33.
Ambrosini
,
W.
, and
Ferreri
,
J. C.
,
2000
, “
Stability Analysis of Single-Phase Thermosyphon Loops by Finite Difference Numerical Methods
,”
Nucl. Eng. Des.
,
201
(
1
), pp.
11
23
.10.1016/S0029-5493(00)00262-4
34.
Tomboulides
,
A.
,
Lee
,
J. C.
, and
Orszag
,
S.
,
1997
, “
Numerical Simulation of Low Mach Number Reactive Flows
,”
J. Sci. Comput.
,
12
(
2
), pp.
139
167
.10.1023/A:1025669715376
35.
Lin
,
J. F.
,
Chiu
,
S. Y.
, and
Ho
,
C. J.
,
2008
, “
Conjugate Heat Transfer Simulation of a Rectangular Natural Circulation Loop
,”
Heat Mass Transfer
,
45
(
2
), pp.
167
175
.10.1007/s00231-008-0416-2
36.
Misale
,
M.
,
Ruffino
,
P.
, and
Frogheri
,
M.
,
2000
, “
The Influence of the Wall Thermal Capacity and Axial Conduction Over a Single-Phase Natural Circulation Loop: 2-D Numerical Study
,”
Heat Mass Transfer
,
36
(
6
), pp.
533
539
.10.1007/s002310000120
37.
Chen
,
L.
, and
Zhang
,
X.
,
2011
, “
Simulation of Heat Transfer and System Behavior in a Supercritical CO2 Based Thermosyphon: Effect of Pipe Diameter
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122505
.10.1115/1.4004434
38.
Yongmann
,
M. C.
, and
Wang
,
Z.
,
2017
, “
Direct Numerical Simulation of a Turbulent Curved Pipe Flow With a 90° Bend
,” Tenth International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), July, Paper No.
310
.http://www.tsfp-conference.org/proceedings/2017/2/310.pdf
You do not currently have access to this content.