Abstract

A one-dimensional analytical validated model for predicting temperature distribution, heat transfer, pressure drop, and fluid pumping power in an open-cell metal foam (OCMF) fin is developed. A foam length optimization technique based on its performance factor (PF) is proposed. Every optimized foam's efficiency is shown to be 33.2%, regardless of its pores per inch (PPI) or porosity. Although it can be applied to other porous materials, the model has been illustrated for aluminum foams with 5–40 PPI and 0.88–0.96 porosity (ε). The highest PPI, lowest porosity foam gives the best unit area goodness factor φu=jH/f, heat transfer, and heat transfer per unit volume Q˙V, while the greatest goodness factor φ (heat transfer rate to fluid pumping power) is achieved by the lowest PPI, lowest porosity foam. The highest PPI, highest porosity foam yields the best heat transfer per unit massQ˙M. Thus, optimum foam selections strongly depend on the application. An often-used fin optimization criterion recommends that the fin effectiveness should equal or exceed 2. This study shows that the effectiveness of any optimized foam always exceeds 2. However, the converse, i.e., requiring the foam effectiveness to at least equal 2, does not guarantee an optimal foam, which implies that the PF-based optimization criterion is an inclusive one. It is also proved that a previously suggested optimization criterion of maximizing a foam's geometric mean efficiency will result in a suboptimal foam design.

References

1.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
,
2004
, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
193
199
.10.1016/S0894-1777(03)00039-6
2.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.10.1016/j.ijheatmasstransfer.2007.12.012
3.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
,
2006
, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(
1
), pp.
228
238
.10.1016/j.jpowsour.2006.06.096
4.
Feser
,
J. P.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2006
, “
Experimental Characterization of In-Plane Permeability of Gas Diffusion Layers
,”
J. Power Sources
,
162
(
2
), pp.
1226
1231
.10.1016/j.jpowsour.2006.07.058
5.
Spielman
,
L.
, and
Goren
,
S. L.
,
1968
, “
Model for Predicting Pressure Drop and Filtration Efficiency in Fibrous Media
,”
Environ. Sci. Technol.
,
2
(
4
), pp.
279
287
.10.1021/es60016a003
6.
Dullien
,
F. A. L.
,
1992
,
Porous Media: Fluid Transport and Pore Structure
, 2nd ed.,
Academic Press
,
San Diego, CA
.
7.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, 2nd ed. (Mechanical Engineering Series),
Springer-Verlag
,
New York
.
8.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. F.
,
2009
,
Transport Phenomena in Biological Systems
, 2nd ed. (Pearson Prentice Hall Bioengineering),
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
9.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
10.
August
,
A.
, and
Nestler
,
B.
,
2020
, “
About the Surface Area to Volume Relations of Open Cell Foams
,”
Eng. Res. Express
,
2
(
1
), p.
015021
.10.1088/2631-8695/ab6ac6
11.
Tianjian
,
L.
,
2002
, “
Ultralight Porous Metals: From Fundamentals to Applications
,”
Acta Mech. Sin.
,
18
(
5
), pp.
457
479
.10.1007/BF02486571
12.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.10.1115/1.1287170
13.
Dukhan
,
N.
,
Quiñones-Ramos
,
P. D.
,
Cruz-Ruiz
,
E.
,
Vélez-Reyes
,
M.
, and
Scott
,
E. P.
,
2005
, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10-ppi Metal Foam
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5112
5120
.10.1016/j.ijheatmasstransfer.2005.07.012
14.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
15.
Fuller
,
A. J.
,
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
219
(
2
), pp.
183
191
.10.1243/095440605X8414
16.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
17.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
18.
Hwang
,
J.-J.
,
Hwang
,
G.-J.
,
Yeh
,
R.-H.
, and
Chao
,
C.-H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.10.1115/1.1416690
19.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2012
, “
Experimental Air Heat Transfer and Pressure Drop Through Copper Foams
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
224
232
.10.1016/j.expthermflusci.2011.09.016
20.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.10.1016/j.ijheatmasstransfer.2013.02.050
21.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Joshi
,
Y. K.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Iyer
,
M. K.
,
2005
, “
Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
272
280
.10.1109/TCAPT.2005.848528
22.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.10.1115/1.3103934
23.
Ghosh
,
I.
,
2009
, “
How Good Is Open-Cell Metal Foam as Heat Transfer Surface?
,”
ASME J. Heat Transfer
,
131
(
10
), p.
101004
.10.1115/1.3160537
24.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071401
.10.1115/1.4000951
25.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Transport Analysis in Parallel-Plate Channel Filled With Open-Celled Metallic Foams
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
868
873
.10.1016/j.icheatmasstransfer.2011.04.015
26.
Dixit
,
T.
, and
Ghosh
,
I.
,
2017
, “
Geometric Mean of Fin Efficiency and Effectiveness: A Parameter to Determine Optimum Length of Open-Cell Metal Foam Used as Extended Heat Transfer Surface
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072002
.10.1115/1.4036079
27.
Fleming
,
P. J.
, and
Wallace
,
J. J.
,
1986
, “
How Not to Lie With Statistics: The Correct Way to Summarize Benchmark Results
,”
Commun. ACM
,
29
(
3
), pp.
218
221
.10.1145/5666.5673
28.
Lee
,
D.-Y.
, and
Vafai
,
K.
,
1999
, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
423
435
.10.1016/S0017-9310(98)00185-9
29.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2015
,
Fundamentals of Heat and Mass Transfer. 2011
,
Wiley
, Hoboken, NJ.
30.
Sullins
,
A. D.
, and
Daryabeigi
,
K.
,
2001
, “
Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam
,”
AIAA
Paper No. 2001-2819.10.2514/6.2001-2819
31.
Mehendale
,
S. S.
,
2018
, “
Thermal Performance of a Pin Fin With Unequal Convective Coefficients Over Its Tip and Surface
,”
Heat Transfer Res.
,
49
(
13
), pp.
1247
1273
.10.1615/HeatTransRes.2018020730
32.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, Krieger Publishing Company, Inc., Malabar, FL.
33.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
,
2004
, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5149
5157
.10.1016/j.ijheatmasstransfer.2004.04.037
34.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
530
537
.10.1115/1.2188461
35.
Ghosh
,
I.
,
2009
, “
Heat Transfer Correlation for High-Porosity Open-Cell Foam
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1488
1494
.10.1016/j.ijheatmasstransfer.2008.07.047
36.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Heat Transfer During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4976
4984
.10.1016/j.ijheatmasstransfer.2010.05.033
37.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2012
, “
Foam Height Effects on Heat Transfer Performance of 20 PPI Aluminum Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.10.1016/j.applthermaleng.2011.05.015
38.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2015
, “
Heat Transfer and Pressure Drop Characteristics of Finned Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021014
.10.1115/1.4029722
39.
Calmidi
,
V. V.
,
1999
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. dissertation, University of Colorado, Boulder, CO.
40.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
,
2004
, “
Effective and Coupled Thermal Conductivities of Isotropic Open-Cellular Foams
,”
AIChE J.
,
50
(
3
), pp.
547
556
.10.1002/aic.10049
41.
Ashby
,
M. F.
,
2006
, “
The Properties of Foams and Lattices
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
364
(
1838
), pp.
15
30
.10.1098/rsta.2005.1678
42.
Singh
,
R.
, and
Kasana
,
H. S.
,
2004
, “
Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1841
1849
.10.1016/j.applthermaleng.2003.12.011
43.
Ma
,
M. Y.
, and
Ye
,
H.
,
2014
, “
An Image Analysis Method to Obtain the Effective Thermal Conductivity of Metallic Foams Via a Redefined Concept of Shape Factor
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1279
1284
.10.1016/j.applthermaleng.2014.08.064
44.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
45.
ERG
,
2020
, “The Basics of Duocel® Foam,” ERG Aerospace, Oakland, CA, accessed Apr. 24, 2021, http://ergaerospace.com/technical-data/the-basics-of-duocel-foam/
46.
Du Plessis
,
J. P.
, and
Masliyah
,
J. H.
,
1988
, “
Mathematical Modelling of Flow Through Consolidated Isotropic Porous Media
,”
Transp. Porous Media
,
3
(
2
), pp.
145
161
.10.1007/BF00820342
47.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.10.1016/0009-2509(94)00170-7
You do not currently have access to this content.