Abstract

Heat sinks and heat exchangers based on flow boiling in mini/microchannels are expected to be more compact and efficient. One of the major challenges while using copper material for phase-change heat transfer application is the change in surface characteristics after prolonged usage due to the thermal oxidation of surface over time. This study involves the repeated experimental runs of flow boiling of water in a 1 mm hydraulic diameter end-milled copper channel to verify the influence of ageing on the thermal and hydraulic performance. As it is difficult to measure the surface wettability in a mini/microchannel, this work makes use of the ageing and surface characterization study conducted on the dummy copper samples to infer the influence of ageing on mini/microchannel surface characteristics and consequently its boiling performance. The test involves measuring over a period of time the wetting behaviors of the end-milled copper samples left in water at three different conditions: one in a constant temperature bath maintained at 60 °C and 1 atm and the remaining two in a pool of boiling water at 110 °C and 120 °C. The study compares the fresh sample and the aged sample for the surface oxidation, surface chemical composition and surface morphology, and discusses the changes in the contact angle and surface morphology caused by copper ageing.

References

1.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
2.
Wenzel
,
R. N.
,
1949
, “
Surface Roughness and Contact Angle
,”
J. Phys. Colloid Chem.
,
53
(
9
), pp.
1466
1467
.10.1021/j150474a015
3.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
4.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow Boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
.10.1016/j.ijheatmasstransfer.2017.01.111
5.
O'Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.10.1063/1.4813450
6.
Ahmadi
,
R.
, and
Okawa
,
T.
,
2015
, “
Influence of Surface Wettability on Bubble Behavior and Void Evolution in Subcooled Flow Boiling
,”
Int. J. Therm. Sci.
,
97
, pp.
114
125
.10.1016/j.ijthermalsci.2015.06.012
7.
Li
,
W.
,
Zhou
,
K.
,
Li
,
J.
,
Feng
,
Z.
, and
Zhu
,
H.
,
2018
, “
Effects of Heat Flux, Mass Flux and Two-Phase Inlet Quality on Flow Boiling in a Vertical Superhydrophilic Microchannel
,”
Int. J. Heat Mass Transfer
,
119
, pp.
601
613
.10.1016/j.ijheatmasstransfer.2017.11.145
8.
Takata
,
Y.
,
Hidaka
,
S.
,
Cao
,
J. M.
,
Nakamura
,
T.
,
Yamamoto
,
H.
,
Masuda
,
M.
, and
Ito
,
T.
,
2005
, “
Effect of Surface Wettability on Boiling and Evaporation
,”
Energy
,
30
(
2–4
), pp.
209
220
.10.1016/j.energy.2004.05.004
9.
Nazari
,
A.
, and
Saedodin
,
S.
,
2017
, “
Critical Heat Flux Enhancement of Pool Boiling Using a Porous Nanostructured Coating
,”
Exp. Heat Transfer
,
30
(
4
), pp.
316
327
.10.1080/08916152.2016.1249806
10.
Li
,
W.
,
Chen
,
Z.
,
Li
,
J.
,
Sheng
,
K.
, and
Zhu
,
J.
,
2019
, “
Subcooled Flow Boiling on Hydrophilic and Super-Hydrophilic Surfaces in Microchannel Under Different Orientations
,”
Int. J. Heat Mass Transfer
,
129
, pp.
635
649
.10.1016/j.ijheatmasstransfer.2018.10.003
11.
Jo
,
H.
,
Ahn
,
H. S.
,
Kang
,
S.
, and
Kim
,
M. H.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5643
5652
.10.1016/j.ijheatmasstransfer.2011.06.001
12.
Liu
,
T. Y.
,
Li
,
P. L.
,
Liu
,
C. W.
, and
Gau
,
C.
,
2011
, “
Boiling Flow Characteristics in Microchannels With Very Hydrophobic Surface to Super-Hydrophilic Surface
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
126
134
.10.1016/j.ijheatmasstransfer.2010.09.060
13.
Takata
,
Y.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2006
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.10.1080/01457630600793962
15.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.10.1115/1.2910737
16.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
17.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.10.1016/j.ijheatfluidflow.2008.07.004
18.
Köroğlu
,
B.
,
Lee
,
K. S.
, and
Park
,
C.
,
2013
, “
Nano/Micro-Scale Surface Modifications Using Copper Oxidation for Enhancement of Surface Wetting and Falling-Film Heat Transfer
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
794
804
.10.1016/j.ijheatmasstransfer.2013.03.040
19.
Vlachou
,
M. C.
,
Lioumbas
,
J. S.
,
David
,
K.
,
Chasapis
,
D.
, and
Karapantsios
,
T. D.
,
2017
, “
Effect of Channel Height and Mass Flux on Highly Subcooled Horizontal Flow Boiling
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
157
168
.10.1016/j.expthermflusci.2017.01.001
20.
Nam
,
Y.
, and
Ju
,
Y. S.
,
2013
, “
A Comparative Study of the Morphology and Wetting Characteristics of Micro/Nanostructured Cu Surfaces for Phase Change Heat Transfer Applications
,”
J. Adhes. Sci. Technol.
,
27
(
20
), pp.
2163
2176
.10.1080/01694243.2012.697783
21.
Roy Chowdhury
,
S. K.
, and
Winterton
,
R. H. S.
,
1985
, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1881
1889
.10.1016/0017-9310(85)90210-8
22.
Hong
,
K. T.
,
Imadojemu
,
H.
, and
Webb
,
R. L.
,
1994
, “
Effects of Oxidation and Surface Roughness on Contact Angle
,”
Exp. Therm. Fluid Sci.
,
8
(
4
), pp.
279
285
.10.1016/0894-1777(94)90058-2
23.
Mahmoud
,
M. M.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
,
2011
, “
Surface Effects in Flow Boiling of R134a in Microtubes
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3334
3346
.10.1016/j.ijheatmasstransfer.2011.03.052
24.
Pike-Wilson
,
E. A.
, and
Karayiannis
,
T. G.
,
2014
, “
Flow Boiling of R245fa in 1.1 mm Diameter Stainless Steel, Brass and Copper Tubes
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
166
183
.10.1016/j.expthermflusci.2014.02.024
25.
Mirmanto
,
M.
,
2014
, “
Heat Transfer Coefficient Calculated Using a Linear Pressure Gradient Assumption and Measurement for Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
269
278
.10.1016/j.ijheatmasstransfer.2014.08.022
26.
Jones
,
B. J.
, and
Garimella
,
S. V.
,
2009
, “
Surface Roughness Effects on Flow Boiling in Microchannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041007
.10.1115/1.4001804
27.
Jafari
,
R.
,
Okutucu-Özyurt
,
T.
,
Ünver
,
H. Ö.
, and
Bayer
,
Ö.
,
2016
, “
Experimental Investigation of Surface Roughness Effects on the Flow Boiling of R134a in Microchannels
,”
Exp. Therm. Fluid Sci.
,
79
, pp.
222
230
.10.1016/j.expthermflusci.2016.07.016
28.
Wang
,
Y.
, and
Sefiane
,
K.
,
2012
, “
Effects of Heat Flux, Vapour Quality, Channel Hydraulic Diameter on Flow Boiling Heat Transfer in Variable Aspect Ratio Micro-Channels Using Transparent Heating
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2235
2243
.10.1016/j.ijheatmasstransfer.2012.01.044
29.
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2008
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
789
806
.10.1016/j.ijheatmasstransfer.2007.04.019
30.
Shah
,
R. K.
,
1978
, “
Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Duct
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
177
179
.10.1115/1.3448626
31.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
32.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
, 4th ed.,
Wiley
,
Hoboken, NJ
. https://www.wiley.com/en-us/Convection+Heat+Transfer%2C+4th+Edition-p-9780470900376
33.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
, 3rd ed.,
Oxford University Press
, New York, pp.
99
280
.
34.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
,
1982
, “
Effect of the Surface Roughness on the Nucleate Boiling Heat Transfer Over the Wide Range of Pressure
,”
Proceedings of the Seventh International Heat Transfer Conference
, München, Germany, Sept. 6–10, Vol.
4
, pp.
61
66
.
35.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
32
42
.10.1016/S0894-1777(96)00168-9
36.
Fadhilah
,
S. A.
,
Marhamah
,
R. S.
, and
Izzat
,
A. H. M.
,
2014
, “
Copper Oxide Nanoparticles for Advanced Refrigerant Thermophysical Properties: Mathematical Modeling
,”
J. Nanopart.
,
2014
, p.
890751
.10.1155/2014/890751
37.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2011
, “
Flow Boiling of Water in a Minichannel: The Effects of Surface Wettability on Two-Phase Pressure Drop
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1894
1905
.10.1016/j.applthermaleng.2011.02.036
38.
Harikrishnan
,
A. R.
,
Dhar
,
P.
,
Agnihotri
,
P. K.
,
Gedupudi
,
S.
, and
Das
,
S. K.
,
2018
, “
Correlating Contact Line Capillarity and Dynamic Contact Angle Hysteresis in Surfactant-Nanoparticle Based Complex Fluids
,”
Phys. Fluids
,
30
(
4
), p.
042006
.10.1063/1.5020334
39.
Harikrishnan
,
A. R.
,
Dhar
,
P.
,
Gedupudi
,
S.
, and
Das
,
S. K.
,
2017
, “
Effect of Interaction of Nanoparticles and Surfactants on the Spreading Dynamics of Sessile Droplets
,”
Langmuir
,
33
(
43
), pp.
12180
12192
.10.1021/acs.langmuir.7b02123
40.
Young
,
F. W.
,
Cathcart
,
J. V.
, and
Gwathmey
,
A. T.
,
1956
, “
The Rates of Oxidation of Several Faces of a Single Crystal of Copper as Determined With Elliptically Polarized Light
,”
Acta Metall.
,
4
(
2
), pp.
145
152
.10.1016/0001-6160(56)90132-8
41.
Jiang
,
X.
,
Herricks
,
T.
, and
Xia
,
Y.
,
2002
, “
CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air
,”
Nano Lett.
,
2
(
12
), pp.
1333
1338
.10.1021/nl0257519
42.
Tu
,
S. H.
,
Wu
,
C. C.
,
Wu
,
H. C.
,
Cheng
,
S. L.
,
Sheng
,
Y. J.
, and
Tsao
,
H. K.
,
2015
, “
Time-Varying Wetting Behavior on Copper Wafer Treated by Wet-Etching
,”
Appl. Surf. Sci.
,
341
, pp.
37
42
.10.1016/j.apsusc.2015.01.048
43.
Tu
,
S. H.
,
Wu
,
H. C.
,
Wu
,
C. J.
,
Cheng
,
S. L.
,
Sheng
,
Y. J.
, and
Tsao
,
H. K.
,
2014
, “
Growing Hydrophobicity on a Smooth Copper Oxide Thin Film at Room Temperature and Reversible Wettability Transition
,”
Appl. Surf. Sci.
,
316
(
1
), pp.
88
92
.10.1016/j.apsusc.2014.07.183
You do not currently have access to this content.