Abstract

An improved method for heat transfer calculations inside rough tubes is provided. The model has been obtained from a second assessment developed early by the authors on fluid flow in single-phase inside rough tubes. The proposed correlation has been verified by comparison with a total of 1666 experimental available data of 34 different Newtonian fluids, including air, gases, water and organic liquids. The proposed model covers a validity range for Prandtl number ranging from 0.65 to 4.52×104, values of Reynolds number from 2.4×103 to 8.32×106, a range of relative roughness ranging from 5×102 to 2×106, and viscosity ratio from 0.0048 to 181.5. The proposed model provides a good correlation for 2.4×103Re<104 and 104Re8.32×106, with an average error of 18.3% for 70.4% of the data and 16.6% for 74.8% of the data, respectively. The method presents a satisfactory agreement with the experimental data in each interval evaluated; therefore, the model can be considered accurate enough for practical applications. At the present time, a method with similar characteristics is unknown in the available technical literature.

References

1.
Binu
,
T. V.
, and
Jayanti
,
S.
,
2018
, “
Heat Transfer Enhancement Due to Internal Circulation Within a Rising Fluid Drop
,”
Therm. Sci. Eng. Prog.
,
8
, pp.
385
396
.10.1016/j.tsep.2018.09.009
2.
Ataei-Dadavi
,
I.
,
Chakkingal
,
M.
,
Kenjeres
,
S.
,
Kleijn
,
C. R.
, and
Tummers
,
M. J.
,
2019
, “
Flow and Heat Transfer Measurements in Natural Convection in Coarse-Grained Porous Media
,”
Int. J. Heat Mass Transfer
,
130
, pp.
575
584
.10.1016/j.ijheatmasstransfer.2018.10.118
3.
Lin
,
Z.
, and
Wang
,
L.
,
2009
, “
Convective Heat Transfer Enhancement in a Circular Tube Using Twisted Tape
,”
ASME J. Heat Transfer
,
131
(
8
), p.
081901
.10.1115/1.3122778
4.
Camaraza-Medina
,
Y.
,
Cruz-Fonticiella
,
O. M.
, and
García-Morales
,
O. F.
,
2019
, “
New Model for Heat Transfer Calculation During Fluid Flow in Single Phase Inside Pipes
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
162
166
.10.1016/j.tsep.2019.03.014
5.
Chen
,
Z. Y.
,
Cheng
,
M.
,
Liao
,
Q.
,
Ding
,
Y. D.
, and
Zhang
,
J. N.
,
2019
, “
Experimental Investigation on the Air-Side Flow and Heat Transfer Characteristics of 3-D Finned Tube Bundle
,”
Int. J. Heat Mass Transfer
,
131
, pp.
506
515
.10.1016/j.ijheatmasstransfer.2018.10.026
6.
Bazán
,
F. S. V.
,
Bedin
,
L.
, and
Bozzoli
,
F.
,
2016
, “
Numerical Estimation of Convective Heat Transfer Coefficient Through Linearization
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1230
1244
.10.1016/j.ijheatmasstransfer.2016.07.021
7.
Rabiee
,
R.
,
Désilets
,
M.
,
Proulx
,
P.
,
Ariana
,
M.
, and
Julien
,
M.
,
2018
, “
Determination of Condensation Heat Transfer Inside a Horizontal Smooth Tube
,”
Int. J. Heat Mass Transfer
,
124
pp.
816
828
.10.1016/j.ijheatmasstransfer.2018.04.012
8.
Camaraza-Medina
,
Y.
,
Hernández-Guerrero
,
A.
, and
Luviano-Ortiz
,
J. L.
,
2020
, “
Comparative Study on Heat Transfer Calculation in Transition and Turbulent Flow Regime Inside Tubes
,”
Latin Am. Appl. Res.
,
50
(
4
), pp.
309
314
.10.52292/j.laar.2020.580
9.
Camaraza-Medina
,
Y.
,
Mortensen-Carlson
,
K.
,
Guha
,
P.
,
Rubio-Gonzales
,
Á.
,
Cruz-Fonticiella
,
O.
, and
García-Morales
,
O.
,
2019
, “
Suggested Model for Heat Transfer Calculation During Fluid Flow in Single Phase Inside Pipes (II)
,”
Int. J. Heat Technol.
,
37
(
1
), pp.
257
266
.10.18280/ijht.370131
10.
Camaraza
,
Y.
,
2017
,
Introducción a la Termotransferencia
,
Editorial Universitaria
,
La Habana, Cuba
.
11.
Song
,
R.
,
Cui
,
M.
, and
Liu
,
J.
,
2017
, “
A Correlation for Heat Transfer and Flow Friction Characteristics of the Offset Strip Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
115
, pp.
695
705
.10.1016/j.ijheatmasstransfer.2017.08.054
12.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Flow Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
Wiley-Interscience
,
New York
.https://searchworks.stanford.edu/view/1292588
13.
Camaraza-Medina
,
Y.
,
Sánchez-Escalona
,
A. A.
,
Cruz-Fonticiella
,
O. M.
, and
García-Morales
,
O. F.
,
2019
, “
Method for Heat Transfer Calculation on Fluid Flow in Single-Phase Inside Rough Pipes
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100436
.10.1016/j.tsep.2019.100436
14.
Medina
,
Y. C.
,
Fonticiella
,
O. M. C.
, and
Morales
,
O. F. G.
,
2017
, “
Design and Modelation of Piping Systems by Means of Use Friction Factor in the Transition Turbulent Zone
,”
Math. Modell. Eng. Probl.
,
4
(
4
), pp.
162
167
.10.18280/mmep.040404
15.
Mondal
,
S.
, and
Field
,
R. W.
,
2018
, “
Theoretical Analysis of the Viscosity Correction Factor for Heat Transfer in Pipe Flow
,”
Chem. Eng. Sci.
,
187
, pp.
27
32
.10.1016/j.ces.2018.04.047
16.
Camaraza
,
Y.
,
2020
,
Transferencia de Calor Por Convección
, 2nd ed.,
Editorial Universitaria
,
La Habana, Cuba
.
17.
Camaraza-Medina
,
Y.
,
Hernandez-Guerrero
,
A.
,
Luviano-Ortiz
,
J. L.
, and
Garcia-Morales
,
O. F.
,
2020
, “
New Improvement Model for Heat Transfer Calculation on Viscous-Gravitational Fluid Flow Inside Vertical and Inclined Tubes
,”
Int. J. Heat Mass Transfer
,
159
, p.
120108
.10.1016/j.ijheatmasstransfer.2020.120108
18.
Medina
,
Y. C.
,
Khandy
,
N. H.
,
Carlson
,
K. M.
,
Fonticiella
,
O. M. C.
, and
Morales
,
O. F. C.
,
2018
, “
Mathematical Modeling of Two-Phase Media Heat Transfer Coefficient in Air-Cooled Condenser Systems
,”
Int. J. Heat Technol.
,
36
(
1
), pp.
319
324
.10.18280/ijht.360142
19.
Cancan
,
Z.
,
Dingbiao
,
W.
,
Sa
,
X.
,
Yong
,
H.
, and
Xu
,
P.
,
2017
, “
Numerical Investigation of Heat Transfer and Pressure Drop in Helically Coiled Tube With Spherical Corrugation
,”
Int. J. Heat Mass Transfer
,
113
, pp.
332
341
.10.1016/j.ijheatmasstransfer.2017.05.108
20.
Sucec
,
J.
,
2020
, “
Rough Surface Turbulent Boundary Layer Heat Transfer Using Generalized Reynolds Analogies
,”
ASME J. Heat Transfer
,
142
(
10
), p.
101801
.10.1115/1.4047504
21.
Camaraza-Medina
,
Y.
,
Hernandez-Guerrero
,
A.
,
Luviano-Ortiz
,
J. L.
,
Mortensen-Carlson
,
K.
,
Cruz-Fonticiella
,
O. M.
, and
García-Morales
,
O. F.
,
2019
, “
New Model for Heat Transfer Calculation During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
128
, pp.
344
353
.10.1016/j.ijheatmasstransfer.2018.09.012
22.
Webb
,
R. L.
,
2009
, “
Single-Phase Heat Transfer, Friction, and Fouling Characteristics of Three-Dimensional Cone Roughness in Tube Flow
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2624
2631
.10.1016/j.ijheatmasstransfer.2009.01.008
23.
Huang
,
D.
,
Wu
,
Z.
,
Sunden
,
B.
, and
Li
,
W.
,
2016
, “
A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress
,”
Appl. Energy
,
162
, pp.
494
505
.10.1016/j.apenergy.2015.10.080
24.
Vadasz
,
P.
,
2018
, “
Heat Flux Vector Potential in Convective Heat Transfer
,”
ASME J. Heat Transfer
,
140
(
5
), p.
051701
.10.1115/1.4038553
25.
Medina
,
Y. C.
,
Khandy
,
N. H.
,
Fonticiella
,
O. M. C.
, and
Morales
,
O. F. G.
,
2017
, “
Abstract of Heat Transfer Coefficient Modelation in Single-Phase Systems Inside Pipes
,”
Math. Modell. Eng. Probl.
,
4
(
3
), pp.
126
131
.10.18280/mmep.040303
You do not currently have access to this content.