Abstract

In this article, the confined jet impingement cooling of a semicylindrical concave plate is analyzed numerically. The finite volume approach is applied to two-dimensional numerical simulations in the transient regime. Air is employed as the working fluid and is regarded as nonparticipant for radiation. The investigation is done for different jet Reynolds numbers (Rej) ranging from 100 to 1000, as the Richardson number (Ri) corresponding to this interval ranges between 0.1 and 10. For any Richardson number, the modified Grashof number (Gr*) is fixed at 105. When analyzing the impact of intersurface radiation between the target plate and confined surfaces on the overall cooling performance, three emissivity values (ε= 0.05, 0.5, and 0.95) are taken into consideration. Additionally, simulations are done for the pure convective heat transfer, ignoring intersurface radiation (ε= 0.0). The influence of surface emissivity and the Richardson number on velocity, temperature, and pressure distribution in the flow domain, local dimensionless temperature (θ) alterations on the target plate and confined walls, alterations in convective (Nuc), radiative (Nur), overall Nusselt numbers (Nuovr), pressure coefficient (Cp), and ratio of radiative Nusselt number to overall Nusselt number (Nur/Nuovr) on the target plate are highlighted. The findings demonstrate that surface emissivity has a significant influence on thermal and hydrodynamic boundary layer formation, buoyancy induced flow and heat transfer, and the proportion of intersurface radiation in overall heat transfer rises as the Richardson number and surface emissivity increase. At low Richardson numbers, the pressure in the stagnation region is greater than the atmospheric pressure. However, as the buoyancy effect increases, the pressure in the stagnation region falls below the atmospheric pressure and rises toward the exit.

References

1.
Chu
,
W. X.
,
Huang
,
K. C.
,
Amer
,
M.
, and
Wang
,
C. C.
,
2019
, “
Experimental and Numerical Investigations on Jet Impingement Cooling for Electronic Modules
,”
ASME J. Heat Mass Transfer-Trans.
,
141
(
10
), p.
102201
.10.1115/1.4044149
2.
Kwon
,
H. G.
,
Chang
,
C. H.
, and
Jang
,
S. H.
,
2020
, “
Diagnosis of Dizziness Due to a Core Vestibular Projection Injury in a Patient With Intracerebral Hemorrhage
,”
Diagnostics
,
10
(
4
), p.
220
.10.3390/diagnostics10040220
3.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2010
, “
Parametric Study of Turbulent Slot-Jet Impingement Heat Transfer From Concave Cylindrical Surfaces
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
428
442
.10.1016/j.ijthermalsci.2009.07.017
4.
Gardon
,
R.
, and
Akfirat
,
J.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
5.
Cadek
,
F. F.
,
1968
, “
A Fundamental Investigation of Jet Impingement Heat Transfer
,” University of Cincinnati, Cincinnati, OH, pp.
1
184
.
6.
Miyazaki
,
H.
, and
Silberman
,
E.
,
1972
, “
Flow and Heat Transfer on a Flat Plate Normal to a Two-Dimensional Laminar Jet Issuing From a Nozzle of Finite Height
,”
Int. J. Heat Mass Transfer
,
15
(
11
), pp.
2097
2107
.10.1016/0017-9310(72)90034-8
7.
Sparrow
,
E. M.
, and
Wong
,
T. C.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
597
605
.10.1016/0017-9310(75)90271-9
8.
Van Heiningen
,
A. R. P.
,
1982
, “
Heat Transfer Under an Impinging Slot Jet
,” Ph.D. thesis,
McGill University
,
Montreal, QC, Canada
.
9.
Garg
,
V. K.
, and
Jayaraj
,
S.
,
1988
, “
Boundary Layer Analysis for Two-Dimensional Slot Jet Impingement on Inclined Plates
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
110
(
3
), pp.
577
582
.10.1115/1.3250531
10.
Yuan
,
T. D.
,
Liburdy
,
J. A.
, and
Wang
,
T.
,
1988
, “
Buoyancy Effects on Laminar Impinging Jets
,”
Int. J. Heat Mass Transfer
,
31
(
10
), pp.
2137
2145
.10.1016/0017-9310(88)90123-8
11.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.10.1115/1.2927680
12.
Gau
,
C.
, and
Chung
,
C. M.
,
1991
, “
Surface Curvature Effect on Slot- Air-Jet Impingement Cooling Flow and Heat Transfer Process
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
4
), pp.
858
864
.10.1115/1.2911214
13.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
14.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
D. S.
,
1997
, “
Turbulent Flow and Heat Transfer Measurements on a Curved Surface With a Fully Developed Round Impinging Jet
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
160
169
.10.1016/S0142-727X(96)00136-1
15.
Lin
,
Z. H.
,
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.10.1016/0017-9310(96)00135-4
16.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
1999
, “
Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces
,”
Exp. Therm. Fluid Sci.
,
20
(
2
), pp.
66
78
.10.1016/S0894-1777(99)00032-1
17.
Yang
,
G.
,
Choi
,
M.
, and
Lee
,
J. S.
,
1999
, “
An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2199
2209
.10.1016/S0017-9310(98)00337-8
18.
Choi
,
M.
,
Yoo
,
H. S.
,
Yang
,
G.
,
Lee Sik
,
J.
, and
Sohn
,
D. K.
,
2000
, “
Measurements of Impinging Jet Flow and Heat Transfer on a Semi-Circular Concave Surface
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1811
1822
.10.1016/S0017-9310(99)00257-4
19.
Cornaro
,
C.
,
Fleischer
,
A. S.
,
Rounds
,
M.
, and
Goldstein
,
R. J.
,
2001
, “
Jet Impingement Cooling of a Convex Semi-Cylindrical Surface
,”
Int. J. Therm. Sci.
,
40
(
10
), pp.
890
898
.10.1016/S1290-0729(01)01275-3
20.
Kayansayan
,
N.
, and
Küçüka
,
S.
,
2001
, “
Impingement Cooling of a Semi-Cylindrical Concave Channel by Confined Slot-Air-Jet
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
383
396
.10.1016/S0894-1777(01)00094-2
21.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Tranfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transf
er,
45
(
6
), pp.
1237
1248
.10.1016/S0017-9310(01)00224-1
22.
Sahoo
,
D.
, and
Sharif
,
M. A. R.
,
2004
, “
Mixed-Convective Cooling of an Isothermal Hot Surface by Confined Slot Jet Impingement
,”
Numer. Heat Transfer Part A
,
45
(
9
), pp.
887
909
.10.1080/10407780490440408
23.
Yang
,
Y. T.
, and
Hwang
,
C. H.
,
2004
, “
Numerical Simulations on the Hydrodynamics of a Turbulent Slot Jet Impinging on a Semicylindrical Convex Surface
,”
Numer. Heat Transfer Part A
,
46
(
10
), pp.
995
1008
.10.1080/10407780490508197
24.
Angioletti
,
M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2005
, “
CFD Turbulent Modelling of Jet Impingement and Its Validation by Particle Image Velocimetry and Mass Transfer Measurements
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
349
356
.10.1016/j.ijthermalsci.2004.11.010
25.
Eren
,
H.
,
Celik
,
N.
, and
Yesilata
,
B.
,
2006
, “
Nonlinear Flow and Heat Transfer Dynamics of a Slot Jet Impinging on a Slightly Curved Concave Surface
,”
Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
364
371
.10.1016/j.icheatmasstransfer.2005.09.012
26.
Eren
,
H.
,
Yesilata
,
B.
, and
Celik
,
N.
,
2007
, “
Nonlinear Flow and Heat Transfer Dynamics of Impinging Jets Onto Slightly-Curved Surfaces
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2600
2608
.10.1016/j.applthermaleng.2007.01.022
27.
Hu
,
G.
, and
Zhang
,
L.
,
2007
, “
Experimental and Numerical Study on Heat Transfer With Impinging Circular Jet on a Convex Hemispherical Surface
,”
Heat Transfer Eng.
,
28
(
12
), pp.
1008
1016
.10.1080/01457630701483638
28.
Lee
,
C. H.
,
Lim
,
K. B.
,
Lee
,
S. H.
,
Yoon
,
Y. J.
, and
Sung
,
N. W.
,
2007
, “
A Study of the Heat Transfer Characteristics of Turbulent Round Jet Impinging on an Inclined Concave Surface Using Liquid Crystal Transient Method
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
559
565
.10.1016/j.expthermflusci.2006.06.004
29.
De Lemos
,
M. J. S.
, and
Fischer
,
C.
,
2008
, “
Thermal Analysis of an Impinging Jet on a Plate With and Without a Porous Layer
,”
Numer. Heat Transfer Part A
,
54
(
11
), pp.
1022
1041
.10.1080/10407780802473590
30.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2009
, “
Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces
,”
Numer. Heat Transfer, Part B
,
55
(
4
), pp.
273
294
.10.1080/10407790902724602
31.
Abishek
,
S.
, and
Narayanaswamy
,
R.
,
2012
, “
Coupled Effects of Surface-Radiation and Buoyancy on Jet-Impingement Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
8
), p.
082203
.10.1115/1.4006109
32.
Öztekin
,
E.
,
Aydin
,
O.
, and
Avc
,
M.
,
2012
, “
Hydrodynamics of a Turbulent Slot Jet Flow Impinging on a Concave Surface
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1631
1638
.10.1016/j.icheatmasstransfer.2012.10.015
33.
Öztekin
,
E.
,
Aydin
,
O.
, and
Avci
,
M.
,
2013
, “
Heat Transfer in a Turbulent Slot Jet Flow Impinging on Concave Surfaces
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
77
82
.10.1016/j.icheatmasstransfer.2013.03.006
34.
Sharif
,
M. A. R.
,
2015
, “
Heat Transfer From an Isothermally Heated Flat Surface Due to Confined Laminar Twin Oblique Slot-Jet Impingement
,”
J. Therm. Sci. Eng. Appl.
,
7
(
3
), pp.
1
11
.10.1016/j.proeng.2013.03.158
35.
Azimi
,
A.
,
Ashjaee
,
M.
, and
Razi
,
P.
,
2015
, “
Slot Jet Impingement Cooling of a Concave Surface in an Annulus
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
300
309
.10.1016/j.expthermflusci.2015.05.008
36.
Zhou
,
Y.
,
Lin
,
G.
,
Bu
,
X.
,
Bai
,
L.
, and
Wen
,
D.
,
2017
, “
Experimental Study of Curvature Effects on Jet Impingement Heat Transfer on Concave Surfaces
,”
Chin. J. Aeronaut.
,
30
(
2
), pp.
586
594
.10.1016/j.cja.2016.12.032
37.
Patil
,
V. S.
, and
Vedula
,
R. P.
,
2018
, “
Local Heat Transfer for Jet Impingement Onto a Concave Surface Including Injection Nozzle Length to Diameter and Curvature Ratio Effects
,”
Exp. Therm. Fluid Sci.
,
92
(
July 2017
), pp.
375
389
.10.1016/j.expthermflusci.2017.08.002
38.
Ekiciler
,
R.
,
Samet
,
M.
,
Çetinkaya
,
A.
, and
Arslan
,
K.
,
2020
, “
Effect of Shape of Nanoparticle on Heat Transfer and Entropy Generation of Nanofluid-Jet Impingement Cooling
,”
Int. J. Green Energy
,
17
(
10
), pp.
555
567
.10.1080/15435075.2020.1739692
39.
Singh
,
A.
,
2021
, “
Numerical Investigation on Location of Protrusions and Dimples During Slot Jet Impingement on a Concave Surface Using Hybrid ANN–GA
,”
Heat Transfer
,
50
(
2
), pp.
1171
1197
.10.1002/htj.21922
40.
Singh
,
A.
,
Chakravarthy
,
B.
, and
Prasad
,
B.
,
2021
, “
Numerical Simulations and Optimization of Impinging Jet Con Fi Guration
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
1
), pp.
1
25
.https://www.emerald.com/insight/content/doi/10.1108/HFF-01-2020-0053/full/html
41.
Pulat
,
E.
, and
Beyazoglu
,
E.
,
2021
, “
International Journal of Thermal Sciences Computational Investigation of Confined Wall Inclination Effects on Impinging Jet Fluid Flow and Heat Transfer
,”
Int. J. Therm. Sci.
,
163
(
February
), p.
106749
.10.1016/j.ijthermalsci.2020.106749
42.
Ho
,
S.
,
Jin
,
H.
,
Hwan
,
Y.
, and
Hee
,
D.
,
2021
, “
The Effects of Thermal Boundary Conditions on the Heat Transfer Characteristics of Laminar Flow in Milli-Scale Confined Impinging Slot Jets
,”
Int. J. Heat Mass Transfer
,
168
, p.
120865
.https://doi.org/10.1016/j.ijheatmasstransfer.2020.120865
43.
Joshi
,
J.
, and
Sahu
,
S. K.
,
2021
, “
Heat Transfer Characteristics of Flat and Concave Surfaces by Circular and Elliptical Jet Impingement
,”
Exp.. Heat Transfer
,
35
(
7
), pp.
1
26
.10.1080/08916152.2021.1995082
44.
Cheng
,
J.
, and
Chen
,
Y.
,
2021
, “
Investigation of Fluid Flow and Heat Transfer Characteristics for a Thermal Anti-Icing System of a High-Altitude and Long-Endurance UAV
,”
J. Mech.
, 37(
10
), pp.
467
483
.10.1093/jom/ufab015
45.
Guo
,
Z.
,
Guo
,
X.
,
Yang
,
Q.
, and
Dong
,
W.
,
2022
, “
Heat Transfer Characteristics of Unexpanded Jet Impingement in Piccolo Hot Air Anti-Icing Chamber
,”
Appl. Therm. Eng.
,
200
(
September 2021
), p.
117540
.10.1016/j.applthermaleng.2021.117540
46.
Albayrak
,
M.
,
Sarper
,
B.
,
Birinci
,
S.
,
Saglam
,
M.
, and
Aydin
,
O.
,
2022
, “
Effect of Surface Radiation on Jet Impingement Cooling of a Concave Surface
,”
Proceedings of CONV-22: International Symposium on Convective Heat Mass Transfer
, İzmir, Turkey, June 5–10, pp.
512
522
.10.1615/ICHMT.2022.CONV22.670
47.
Qi
,
M.
,
Chen
,
Z.
, and
Fu
,
R.
,
2001
, “
Flow Structure of the Plane Turbulent Impinging Jet in Cross Flow
,”
J. Hydraul. Res.
,
39
(
2
), pp.
155
161
.10.1080/00221680109499816
48.
Rao
,
C. G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2002
, “
Effect of Surface Radiation on Conjugate Mixed Convection in a Vertical Channel With a Discrete Heat Source in Each Wall
,”
Int. J. Heat and Mass Tran.
,
45
(
16
), pp.
3331
3347
.10.1016/S0017-9310(02)00061-3
49.
Premachandran
,
B.
, and
Balaji
,
C.
,
2005
, “
Mixed Convection Heat Transfer From a Horizontal Channel With Protruding Heat Sources
,”
Heat Mass Transfer
, 41, pp.
510
518
.10.1007/s00231-004-0570-0
50.
Li
,
X.
,
Song
,
W.
,
Wang
,
Q.
,
Li
,
H.
,
Ding
,
X.
, and
Liu
,
S.
,
2023
, “
Optimizing Cooling Electronic Chips at High Altitude With Consideration of Solar Radiation
,”
Int. J. Therm. Sci.
,
183
, p.
107879
.
51.
Premachandran
,
B.
, and
Balaji
,
C.
,
2006
, “
Conjugate Mixed Convection With Surface Radiation From a Horizontal Channel With Protruding Heat Sources
,” Int. J. Heat and Mass Tran.,
49
(
19–20
), pp.
3568
3582
.
52.
Premachandran
,
B.
, and
Balaji
,
C.
,
2011
, “
Conjugate Mixed Convection With Surface Radiation From a Vertical Channel With Protruding Heat Sources
,”
Numer. Heat Transfer, Part A
, 60, p.
7782
.10.1080/10407782.2011.588577
53.
Kumar
,
G. G.
, and
Rao
,
C. G.
,
2012
, “
Parametric Studies and Correlations for Combined Conduction-Mixed Convection – Radiation From a Non-Identically and Discretely Heated Vertical Plate
,”
Heat Mass Transfer
, 48, pp.
505
517
.10.1007/s00231-011-0899-0
54.
Londhe
,
S. D.
, and
Rao
,
C. G.
,
2014
, “
Interaction of Surface Radiation With Conjugate Mixed Convection From a Vertical Channel With Multiple Discrete Heat Sources
,”
Heat Mass Transfer
, 50, pp.
1275
1290
.https://link.springer.com/article/10.1007/s00231-014-1333-1
55.
Sarper
,
B.
,
Saglam
,
M.
,
Aydin
,
O.
, and
Avci
,
M.
,
2018
, “
Natural Convection in a Parallel-Plate Vertical Channel With Discrete Heating by Two Flush-Mounted Heaters: Effect of the Clearance Between the Heaters
,”
Heat Mass Transfer
,
54
, pp.
1069
1083
.10.1007/s00231-017-2203-4
56.
Hu
,
J.
,
Guo
,
M.
,
Guo
,
J.
,
Zhang
,
G.
, and
Zhang
,
Y.
,
2020
, “
Numerical and Experimental Investigation of Solar Air Collector With Internal Swirling Flow
,”
Renew. Energy
,
162
, pp.
2259
2271
.10.1016/j.renene.2020.10.048
57.
Sarper
,
B.
,
Birinci
,
S.
,
Saglam
,
M.
, and
Aydin
,
O.
,
2022
, “
Constructal Enhancement of Cooling Performance of Local Heating Elements With Different Heat Generation Rates Under Free and Mixed Convection Regimes
,”
Int. Commun. Heat Mass Transfer
,
135
(
June
), p.
106145
.10.1016/j.icheatmasstransfer.2022.106145
58.
Singh
,
S.
,
2022
, “
Utilising Fractional Porous Interface for High Thermal Performance of Serpentine Wavy Channel Solar Air Heater
,”
Appl. Therm. Eng.
,
205
(
January
), p.
118044
.10.1016/j.applthermaleng.2022.118044
59.
Kumar
,
S.
,
Vijayan
,
P. K.
,
Kannan
,
U.
,
Sharma
,
M.
, and
Pilkhwal
,
D. S.
,
2017
, “
Experimental and Computational Simulation of Thermal Stratification in Large Pools With İmmersed Condenser
,”
Appl. Therm. Eng.
,
113
, pp.
345
361
.10.1016/j.applthermaleng.2016.10.175
60.
Kumar
,
S.
,
Grover
,
R. B.
,
Yadav
,
H.
,
Vijayan
,
P. K.
,
Kannan
,
U.
, and
Agrawal
,
A.
,
2018
, “
Experimental and Numerical İnvestigation on Suppression of Thermal Stratification in a Water-Pool: PIV Measurements and CFD Simulaitons
,”
Appl. Therm. Eng.
,
138
, pp.
668
704
.10.1016/j.applthermaleng.2018.04.070
61.
Wang
,
Z.
,
Zhang
,
H.
,
Dou
,
B.
,
Zhang
,
G.
,
Wu
,
W.
, and
Zhou
,
L.
,
2020
, “
An Experimental Study for the Enhancement of Stratification in Heat-Storage Tank by Equalizer and PCM Module
,”
J. Energy Storage
,
27
, p.
101010
.10.1016/j.est.2019.101010
62.
Zhou
,
Y.
,
Wang
,
M.
,
Wang
,
M.
, and
Wang
,
Y.
,
2018
, “
Predictive Accuracy of Boussinesq Approximation in Opposed Mixed Convection With a High-Temperature Heat Source Inside a Buliding
,”
Build. Environ.
,
144
, pp.
349
356
.10.1016/j.buildenv.2018.08.043
63.
Ansys Inc., 2021,
ANSYS Fluent, Release 21 R2, Theory Guide
,” Ansys Inc., Canonsburg, PA.
64.
Guarino
,
J. R.
, and
Manno
,
V. P.
,
2002
, “
Characterization of Laminar Jet Impingement Cooling in Portable Computer Applications
,”
Annu. IEEE Semicond. Therm. Meas. Manag. Symp.
,
25
(
3
), pp.
337
346
.10.1109/TCAPT.2002.800598
65.
Gad
,
M. A.
, and
Balaji
,
C.
,
2010
, “
Effect of Surface Radiation RBC in Cavities Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1459
1464
.10.1016/j.icheatmasstransfer.2010.08.003
66.
Balaji
,
C.
,
Hölling
,
M.
, and
Herwig
,
H.
,
2007
, “
Combined Mixed Convection and Surface Radiation Using Asymptotic Computational Fluid Dynamics (ACFD)
,”
Heat Mass Transfer
,
43
(
6
), pp.
567
577
.10.1007/s00231-006-0145-3
67.
Park
,
T. H.
,
Choi
,
H. G.
,
Yoo
,
Y.
, and
Kim
,
S. J.
,
2003
, “
Streamline Upwind Numerical Simulation of Two-Dimensional Confined İmpinging Slot Jets
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
251
262
.10.1016/S0017-9310(02)00270-3
68.
Sarper
,
B.
,
Saglam
,
M.
, and
Aydin
,
O.
,
2018
, “
Constructal Placement of Discrete Heat Sources With Different Lengths in Vertical Ducts Under Natural and Mixed Convection
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
12
), p.
121401
.10.1115/1.4041187
You do not currently have access to this content.