Abstract

The present study primarily investigates the exergy and entropy generation in a heat exchanger influenced by the combined effects of mechanical vibrations and magnetic fields. A rectangular channel with dimensions 40 mm in length and 4 mm in width was examined using magnets of varying strengths and subjected to vibrations and magnetic fields. The Reynolds number (Re) investigated in this study ranges from 150 to 300. Both, magnetic field and vibrations, generated intricate patterns and contours, highlighting their interaction with flow dynamics. As vibrational intensity increased, the Nusselt number amplified correspondingly. While the introduction of magnetic field also enhanced the Nusselt number (Nu), the impact of vibrations was more pronounced. A maximum Nu enhancement of 225.9% was achieved at a Re 300, under the influence of vibrations at 5 mm and 25 Hz, and a magnetic field strength of 2000 G. The study further revealed that exergy efficiency decreases progressively with increasing Re but improves with higher vibrational intensity, reaching a peak of 52.81% at 5 mm and 25 Hz. Additionally, it was observed that irreversibility (φ) decreases with increasing vibrational and magnetic strengths. The ratio of entropy generation under the vibrational and magnetic influence to that of static case peaked at a value of 2.4 under vibrational intensity of 5 mm and 25 Hz, and magnetic field strength of 2000 G.

References

1.
Arasavellı
,
S. S.
,
Konıjetı
,
R.
, and
Budda
,
G. R.
,
2021
, “
Positive Impact of Vibration on Heat Transfer in Twisted Tape Inserted Heat Exchanger
,”
J. Therm. Eng.
,
7
(
7
), pp.
1731
1742
.10.18186/thermal.1025962
2.
Al Omari
,
S. A. B.
, and
Elnajjar
,
E.
,
2023
, “
Heat Sinks With Vibration Enhanced Heat Transfer
,” U.S. Patent No. 11,732,982.
3.
Han
,
Y.
,
Chen
,
M.
,
Peng
,
Z.
,
Han
,
Z.
, and
Zan
,
H.
,
2023
, “
Effect of Vibration in Cooling Channel on Heat Transfer of Aviation Kerosene Flowing Under Different Pressures
,”
Therm. Sci.
,
27
(
1 Part A
), pp.
151
166
.10.2298/TSCI220523114H
4.
Purwono
,
B. S. A.
, and
Irawan
,
B.
,
2019
, “
The Effect of Ultrasonic Vibration Frequency on Double Pipe Heat Exchangers During the Cooling Process
,”
Int. J. Simul.–Syst., Sci. Technol.
,
20
(
1
), pp.
1
5
.10.5013/IJSSST.a.20.01.23
5.
Chen
,
L.
,
Zhang
,
H.
,
Huang
,
S.
,
Wang
,
B.
, and
Zhang
,
C.
,
2022
, “
Numerical Analysis of Flow-Induced Vibration of Heat Exchanger Tube Bundles Based on Fluid-Structure Coupling Dynamics
,”
Modell. Simul. Eng.
,
2022
, pp.
1
13
.10.1155/2022/1467019
6.
Hou
,
S.
,
Zhang
,
X.
,
Liu
,
J.
,
Fan
,
S.
,
Zhang
,
Y.
, and
Li
,
M.
,
2023
, “
Impact of Vibration on Heat Transfer and Flow Properties of Heat Exchange Surfaces
,”
Numer. Heat Transfer, Part A
,
84
(
6
), pp.
529
549
.10.1080/10407782.2022.2143973
7.
Chen
,
J.
,
Dong
,
J.
, and
Yao
,
Y.
,
2021
, “
Experimental Study on the Starting-Up and Heat Transfer Characteristics of a Pulsating Heat Pipe Under Local Low-Frequency Vibrations
,”
Energies
,
14
(
19
), p.
6310
.10.3390/en14196310
8.
Rasangika
,
A. H. D. K.
,
Nasif
,
M. S.
,
Pao
,
W.
, and
Al-Waked
,
R.
,
2022
, “
Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement
,”
Appl. Sci.
,
12
(
10
), p.
4911
.10.3390/app12104911
9.
Mishra
,
S. K.
,
Chandra
,
H.
, and
Arora
,
A.
,
2019
, “
Effect of Velocity and Rheology of Nanofluid on Heat Transfer of Laminar Vibrational Flow Through a Pipe Under Constant Heat Flux
,”
Int. Nano Lett.
,
9
(
3
), pp.
245
256
.10.1007/s40089-019-0276-4
10.
Yuan
,
X.
,
Lan
,
C.
,
Hu
,
J.
,
Fan
,
Y.
, and
Min
,
C.
,
2023
, “
Effect of a Vibrating Blade in a Channel on the Heat Transfer Performance
,”
Energies
,
16
(
7
), p.
3076
.10.3390/en16073076
11.
Khudhair
,
B. K.
,
Salh
,
A. M.
, and
Ekaid
,
A.
,
2021
, “
Vibration Effect on Natural Convection Heat Transfer in an Inclosed Cubic Cavity
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1094
(
1
), p.
012060
.10.1088/1757-899X/1094/1/012060
12.
Kalpani Rasangika
,
A. H. D.
,
Nasif
,
M. S.
,
Pao
,
W.
, and
Al-Waked
,
R.
,
2022
, “
Numerical Investigation on the Effect of Vibration on Cooling Enhancement of Heat Sinks
,”
ICPER 2020:
Proceedings of the 7th International Conference on Production, Energy and Reliability
,
Kuching, Malaysia
, July 14–16, pp.
171
178
.10.1007/978-981-19-1939-8_15
13.
Khalil
,
B. K.
,
Saleh
,
A. M.
, and
Ekaid
,
A. L.
,
2023
, “
An Experimental Study of Forced Vibration on Natural Convection Between Closed Ended Concentric and Eccentric Annular of Horizontal Cylinder
,”
Diagnostyka
,
24
(
2
), pp.
1
13
.10.29354/diag/165931
14.
Khan
,
H. H.
,
Islam
,
M. D.
,
Fatt
,
Y. Y.
, and
Janajreh
,
I.
,
2022
, “
Effects of Flow-Induced Vibration on Forced Convection Heat Transfer From Two Tandem Cylinders at Unequal Diameters
,”
ASME
Paper No. V001T20A006.10.1115/V001T20A006
15.
Kadhim
,
S. K.
,
Ali
,
S. A.
,
Razak
,
N.
, and
Sani
,
M.
,
2021
, “
Vertical Vibrations Effect on Forced Convection Heat Transfer From a Longitudinal Finned Tube
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1062
(
1
), p.
012007
.10.1088/1757-899X/1062/1/012007
16.
Su
,
Y.
,
Li
,
M.
,
Miao
,
X.
,
Lv
,
Y.
, and
Bi
,
J.
,
2022
, “
Research on Enhancement of Heat Transfer by Vortex-Induced Vibration of Heat Exchange Tube Bundles With Elastic Joints
,”
Numer. Heat Transfer, Part A.
,
82
(
9
), pp.
543
560
.10.1080/10407782.2022.2079834
17.
Kumar
,
A.
,
Behura
,
A. K.
,
Dwivedi
,
G.
, and
Thatoi
,
D.
,
2022
, “
Investigation on Coefficient of Heat Transfer Through Impact of Engine Vibration
,”
Recent Advances in Mechanical Engineering, Select Proceedings of ICRAMERD 2021
,
Springer
,
Singapore
, pp.
485
493
.
18.
Sun
,
Y.
,
Ji
,
J.
,
Hua
,
Z.
,
Gao
,
R.
, and
Wang
,
C.
,
2023
, “
Flow-Induced Vibration and Heat Transfer Analysis for a Novel Hollow Heat Exchanger
,”
J. Thermophys. Heat Transfer
,
37
(
1
), pp.
94
103
.10.2514/1.T6588
19.
Ji
,
J.
,
Deng
,
X.
,
Zhang
,
J.
,
Li
,
F.
, and
Zhou
,
R.
,
2022
, “
Study on Vibration and Heat Transfer Performances of a Modified Elastic Tube Bundle Heat Exchanger
,”
In J. Phys.: Conf. Ser.
,
2181
(
1
), p.
012043
.10.1088/1742-6596/2181/1/012043
20.
Ji
,
J.
,
Li
,
F.
,
Shi
,
B.
,
Gao
,
R.
,
Zhang
,
J.
, and
Deng
,
X.
,
2022
, “
Vibration-Enhanced Heat Transfer of Double-Array Helical Elastic Tube Bundle Heat Exchanger
,”
J. Thermophys. Heat Transfer
,
36
(
2
), pp.
351
357
.10.2514/1.T6413
21.
Ji
,
J.
, and
Zhang
,
J.
, 2023, “
Vibration and Heat Transfer Study on Improved Elastic Bundle Heat Exchanger
,”
Heat Transfer Res.
,
54
(
16
), pp.
85
99
.10.1615/HeatTransRes.2023047751
22.
Bhowmick
,
D.
,
Chakravarthy
,
S.
,
Randive
,
P. R.
, and
Pati
,
S.
,
2020
, “
Numerical Investigation on the Effect of Magnetic Field on Natural Convection Heat Transfer From a Pair of Embedded Cylinders Within a Porous Enclosure
,”
J. Therm. Anal. Calorim.
,
141
(
6
), pp.
2405
2427
.10.1007/s10973-020-09411-6
23.
Boushehri
,
R.
,
Hassanzadeh Afrouzi
,
H.
, and
Farhadi
,
M.
,
2020
, “
Numerical Investigation of Magnetic Field Effect on Nanofluid Heat Transfer in Microchannel With Hydrophobic Surface Using Incompressible Pre Conditioned Lattice Boltzmann Method
,”
SN Appl. Sci.
,
2
(
7
), p.
1195
.10.1007/s42452-020-2950-6
24.
Shi
,
E.
,
Li
,
K.
,
Jiang
,
C.
,
He
,
Y.
, and
Mohammadpourfard
,
M.
,
2021
, “
Non-Uniform Magnetic Field Impact on Thermomagnetic Convection of Paramagnetic Air in a Permanent Magnet-Inserted Horizontal Annulus
,”
Eur. Phys. J. Plus
,
136
(
2
), pp.
1
19
.10.1140/epjp/s13360-021-01136-1
25.
Hosseinizadeh
,
S. E.
,
Majidi
,
S.
,
Goharkhah
,
M.
, and
Jahangiri
,
A.
,
2021
, “
Energy and Exergy Analysis of Ferrofluid Flow in a Triple Tube Heat Exchanger Under the Influence of an External Magnetic Field
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101019
.10.1016/j.tsep.2021.101019
26.
Bezaatpour
,
M.
, and
Rostamzadeh
,
H.
,
2020
, “
Energetic and Exergetic Performance Enhancement of Heat Exchangers Via Simultaneous Use of Nanofluid and Magnetic Swirling Flow: A Two-Phase Approach
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100706
.10.1016/j.tsep.2020.100706
27.
Azizi
,
Y.
,
Bahramkhoo
,
M.
, and
Kazemi
,
A.
,
2023
, “
Influence of Non-Uniform Magnetic Field on the Thermal Efficiency Hydrodynamic Characteristics of Nanofluid in Double Pipe Heat Exchanger
,”
Sci. Rep.
,
13
(
1
), p.
407
.10.1038/s41598-022-26285-w
28.
Choi
,
Y.-S.
, and
Kim
,
Y.-J.
,
2021
, “
Effect of Magnetic Nanofluids on the Performance of a Fin-Tube Heat Exchanger
,”
Appl. Sci.
,
11
(
19
), p.
9261
.10.3390/app11199261
29.
Zhang
,
X.
,
Li
,
J.
, and
Zhang
,
Y.
,
2024
, “
Heat Transfer Characteristics of Nanofluid Under the Action of Magnetic Field Based on Molecular Dynamics and Flow States
,”
Numer. Heat Transfer, Part A.
,
85
(
4
), pp.
491
515
.10.1080/10407782.2023.2187904
30.
Shafiee
,
H.
,
NikzadehAbbasi
,
E.
, and
Soltani
,
M.
,
2021
, “
Numerical Study of the Effect of Magnetic Field on Nanofluid Heat Transfer in Metal Foam Environment
,”
Geofluids
,
2021
, pp.
1
14
.10.1155/2021/3209855
31.
Mousavi
,
S.
,
Jamshidi
,
N.
, and
Rabienataj-Darzi
,
A.
,
2019
, “
Numerical Investigation of the Magnetic Field Effect on the Heat Transfer and Fluid Flow of Ferrofluid Inside Helical Tube
,”
J. Therm. Anal. Calorim.
,
137
(
5
), pp.
1591
1601
.10.1007/s10973-019-08066-2
32.
Ebaid
,
M. S.
,
Ghrair
,
A. M.
, and
Al-Busoul
,
M.
,
2022
, “
Investigation of Heat Transfer Enhancement Using Ferro-Nanofluids (Fe3O4/Water) in a Heated Pipe Under the Application of Magnetic Field
,”
Adv. Mech. Eng.
,
14
(
6
), p.
168781322211026
.10.1177/16878132221102647
33.
Lee
,
A.
,
Veerakumar
,
C.
, and
Cho
,
H.
,
2021
, “
Effect of Magnetic Field on the Forced Convective Heat Transfer of Water–Ethylene Glycol-Based Fe3O4 and Fe3O4-MWCNT Nanofluids
,”
Appl. Sci.
,
11
(
10
), p.
4683
.10.3390/app11104683
34.
Alsarraf
,
J.
,
Rahmani
,
R.
,
Shahsavar
,
A.
,
Afrand
,
M.
,
Wongwises
,
S.
, and
Tran
,
M. D.
,
2019
, “
Effect of Magnetic Field on Laminar Forced Convective Heat Transfer of MWCNT–Fe3O4/Water Hybrid Nanofluid in a Heated Tube
,”
J. Therm. Anal. Calorim.
,
137
(
5
), pp.
1809
1825
.10.1007/s10973-019-08078-y
35.
Pazarlıoğlu
,
H. K.
,
Gurdal
,
M.
,
Tekir
,
M.
,
Arslan
,
K.
, and
Gedik
,
E.
,
2022
, “
Impact of Twisted Ducts With Different Twist Ratios on Heat Transfer and Fluid Characteristics of NiO/Water Nanofluid Flow Under Magnetic Field Effect
,”
Heat Transfer Res.
,
53
(
4
), pp.
55
71
.10.1615/HeatTransRes.2022041263
36.
Ashjaee
,
M.
,
Goharkhah
,
M.
,
Khadem
,
L. A.
, and
Ahmadi
,
R.
,
2015
, “
Effect of Magnetic Field on the Forced Convection Heat Transfer and Pressure Drop of a Magnetic Nanofluid in a Miniature Heat Sink
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
51
(
7
), pp.
953
964
.10.1007/s00231-014-1467-1
37.
Shahsavar
,
A.
,
Askari
,
I. B.
,
Ghodrat
,
M.
,
Arıcı
,
M.
,
Nižetić
,
S.
,
Rehman
,
T.-U.
, and
Ma
,
Z.
,
2023
, “
Experimental Investigation of the Effect of Mechanical Vibration and Rotating Magnetic Field on the Hydrothermal Performance of Water-Fe3O4 Ferrofluid Inside a Rifled Tube
,”
J. Magn. Magn. Mater.
,
572
, p.
170586
.10.1016/j.jmmm.2023.170586
38.
Naphon
,
P.
, and
Wiriyasart
,
S.
,
2018
, “
Experimental Study on Laminar Pulsating Flow and Heat Transfer of Nanofluids in Micro-Fins Tube With Magnetic Fields
,”
Int. J. Heat Mass Transfer
,
118
, pp.
297
303
.10.1016/j.ijheatmasstransfer.2017.10.131
39.
Rui
,
L.
, and
Tao
,
H.
,
2018
, “
Numerical Investigation of Heat Transfer and Flow Inner Tube With pe-Riodically Cosine Oscillation
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1082
1091
.10.1016/j.ijheatmasstransfer.2018.06.155
40.
Bezaatpour
,
M.
, and
Rostamzadeh
,
H.
,
2020
, “
Heat Transfer Enhancement of a Fin-and-Tube Compact Heat Exchanger by Employing Magnetite Ferrofluid Flow and an External Magnetic Field
,”
Appl. Therm. Eng.
,
164
, p.
114462
.10.1016/j.applthermaleng.2019.114462
41.
White
,
F. M.
, and
Majdalani
,
J.
,
2006
,
Viscous Fluid Flow
, Vol.
3
,
McGraw-Hill
,
New York
.
42.
Şahin
,
A. Z.
,
2000
, “
Entropy Generation in Turbulent Liquid Flow Through a Smooth Duct Subjected to Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
(
8
), pp.
1469
1478
.10.1016/S0017-9310(99)00216-1
You do not currently have access to this content.