Abstract

The heat transfer performance of an oscillating heat pipe (OHP) was significantly enhanced by changing the inner wall surface wettability and filling ratios. Among the various wettability types, a hybrid surface, where the evaporator and condenser have different wettability, has shown enhancement of heat transfer performance significantly. The effects of different surface wettable vertical tubes are yet to be investigated. Therefore, in this study, a single-loop OHP with three different surface wettable vertical tubes, namely, alternate wettability OHP (AWOHP) were numerically investigated at different filling ratios of 30–90%. The different wettability rates of two vertical tubes caused an uneven distribution of slugs and plugs, which generated an unbalanced pressure difference between the tubes, thereby reducing the start-up time by 60–79%. The bulk mean temperature of the left and right adiabatic tubes was investigated to understand the nature of fluid flow. For filling ratios (FRs) of 30–70%, the right tube temperature was always higher than the left tube in AWOHP 3 (hydrophilic left tube, super-hydrophobic right tube), indicating unidirectional circulatory flow, with an occasional change in direction at 70% FR. At lower FR of 30%, AWOHP 2 (super-hydrophilic left tube, super-hydrophobic right tube) exhibited the highest heat transfer performance. In contrast, at higher FRs of 50–90%, AWOHP 3 exhibited the highest heat transfer performance with conductance (G) of 1075 W/m2 K at an FR of 70%, 55% higher than conventional oscillating heat pipe (COHP).

References

1.
Saha
,
B. K.
, and
Chakraborty
,
B.
,
2017
, “
Utilization of Low-Grade Waste Heat-to-Energy Technologies and Policy in Indian Industrial Sector: A Review
,”
Clean Technol. Environ. Policy
,
19
, pp.
327
347
.10.1007/s10098-016-1248-2
2.
Mahajan
,
G.
,
Thompson
,
S. M.
, and
Cho
,
H.
,
2017
, “
Energy and Cost Savings Potential of Oscillating Heat Pipes for Waste Heat Recovery Ventilation
,”
Energy Rep.
,
3
, pp.
46
53
.10.1016/j.egyr.2016.12.002
3.
Xu
,
Y.
,
Xue
,
Y.
,
Cai
,
W.
,
Qi
,
H.
, and
Li
,
Q.
,
2023
, “
Experimental Study on Performances of Flat-Plate Pulsating Heat Pipes Without and With Thermoelectric Generators for Low-Grade Waste Heat Recovery
,”
Appl. Therm. Eng.
,
225
, p.
120156
.10.1016/j.applthermaleng.2023.120156
4.
Akachi
,
H.
,
1990
, “
Structure of Micro Heat Pipe
,” U.S. Patent No. 5,219,020.
5.
Khandekar
,
S.
, and
Groll
,
M.
,
2003
, “
On the Definition of Pulsating Heat Pipes an Overview
,”
Proceedings of the 5th Minsk International Conference (Heat Pipes, Heat Pumps and Refrigerators)
,
Minsk, Belarus
, Sept. 8–11, pp.
707
719
.http://www.porousmedialab.by/seminar/light/10.pdf
6.
Khandekar
,
S.
, and
Groll
,
M.
,
2004
, “
An Insight Into Thermo-Hydrodynamic Coupling in Closed Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
,
43
(
1
), pp.
13
20
.10.1016/S1290-0729(03)00100-5
7.
Holley
,
B.
, and
Faghri
,
A.
,
2005
, “
Analysis of Pulsating Heat Pipe With Capillary Wick and Varying Channel Diameter
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2635
2651
.10.1016/j.ijheatmasstransfer.2005.01.013
8.
Karthikeyan
,
V. K.
,
Khandekar
,
S.
,
Pillai
,
B. C.
, and
Sharma
,
P. K.
,
2014
, “
Infrared Thermography of a Pulsating Heat Pipe: Flow Regimes and Multiple Steady States
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
470
480
.10.1016/j.applthermaleng.2013.09.041
9.
Rittidech
,
S.
,
Pipatpaiboon
,
N.
, and
Terdtoon
,
P.
,
2007
, “
Heat-Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves
,”
Appl. Energy
,
84
(
5
), pp.
565
577
.10.1016/j.apenergy.2006.09.010
10.
Rittidech
,
S.
,
Pipatpaiboon
,
N.
, and
Thongdaeng
,
S.
,
2010
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat-Pipe With Check Valves
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
545
550
.10.1007/s12206-009-1221-7
11.
Bhuwakietkumjohn
,
N.
, and
Rittidech
,
S.
,
2010
, “
Internal Flow Patterns on Heat Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves Using Ethanol and a Silver Nano-Ethanol Mixture
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1000
1007
.10.1016/j.expthermflusci.2010.03.003
12.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.10.1016/j.expthermflusci.2011.04.014
13.
de Vries
,
S. F.
,
Florea
,
D.
,
Homburg
,
F. G. A.
, and
Frijns
,
A. J. H.
,
2017
, “
Design and Operation of a Tesla-Type Valve for Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
105
, pp.
1
11
.10.1016/j.ijheatmasstransfer.2016.09.062
14.
Jang
,
D. S.
,
Ham
,
S. H.
,
Shin
,
H. H.
, and
Kim
,
Y.
,
2024
, “
Thermal Performance Improvement of a Radial Pulsating Heat Pipe With Diverging Channels by Adopting Tesla Valves at Various Heat Fluxes
,”
Appl. Therm. Eng.
,
237
, p.
121799
.10.1016/j.applthermaleng.2023.121799
15.
Wits
,
W. W.
,
Groeneveld
,
G.
, and
Van Gerner
,
H. J.
,
2019
, “
Experimental Investigation of a Flat-Plate Closed-Loop Pulsating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
9
), p.
091807
.10.1115/1.4042367
16.
Feng
,
C.
,
Wan
,
Z.
,
Mo
,
H.
,
Tang
,
H.
,
Lu
,
L.
, and
Tang
,
Y.
,
2018
, “
Heat Transfer Characteristics of a Novel Closed-Loop Pulsating Heat Pipe With a Check Valve
,”
Appl. Therm. Eng.
,
141
, pp.
558
564
.10.1016/j.applthermaleng.2018.06.010
17.
Wan
,
Z.
,
Wang
,
X.
, and
Feng
,
C.
,
2020
, “
Heat Transfer Performances of the Capillary Loop Pulsating Heat Pipes With Spring-Loaded Check Valve
,”
Appl. Therm. Eng.
,
167
, p.
114803
.10.1016/j.applthermaleng.2019.114803
18.
Ando
,
M.
,
Okamoto
,
A.
, and
Nagai
,
H.
,
2021
, “
Start-Up and Heat Transfer Characteristics of Oscillating Heat Pipe With Different Check Valve Layouts
,”
Appl. Therm. Eng.
,
196
, p.
117286
.10.1016/j.applthermaleng.2021.117286
19.
Ando
,
M.
,
Okamoto
,
A.
, and
Nagai
,
H.
,
2023
, “
Effect of Flow Resistance of Floating-Type Check Valves on Heat Transfer Characteristics of an Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
10
), p.
101004
.10.1115/1.4062783
20.
Smyrnov
,
G.
,
2002
,
Method of Action of the Pulsating Heat Pipe, Its Construction and the Devices on Its Base
,” U.S. Patent No. 6,672,373.
21.
Chiang
,
C. M.
,
Chien
,
K. H.
,
Chen
,
H. M.
, and
Wang
,
C. C.
,
2012
, “
Theoretical Study of Oscillatory Phenomena in a Horizontal Closed-Loop Pulsating Heat Pipe With Asymmetrical Arrayed Minichannel
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
923
930
.10.1016/j.icheatmasstransfer.2012.05.019
22.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2014
, “
Operational Characteristics of Pulsating Heat Pipes With a Dual-Diameter Tube
,”
Int. J. Heat Mass Transfer
,
75
, pp.
184
195
.10.1016/j.ijheatmasstransfer.2014.03.032
23.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
, pp.
817
828
.10.1016/j.ijheatmasstransfer.2015.05.091
24.
Wang
,
J.
,
Pan
,
Y.
, and
Liu
,
X.
,
2021
, “
Investigation on Start-Up and Thermal Performance of the Single-Loop Pulsating Heat Pipe With Variable Diameter
,”
Int. J. Heat Mass Transfer
,
180
, p.
121811
.10.1016/j.ijheatmasstransfer.2021.121811
25.
Liu
,
Y.
,
Dan
,
D.
,
Wei
,
M.
,
Zheng
,
S.
, and
Sun
,
J.
,
2024
, “
Numerical Investigation on the Start-Up and Heat Transfer Performance of Dual-Diameter Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
236
, p.
121709
.10.1016/j.applthermaleng.2023.121709
26.
Aref
,
L.
,
Fallahzadeh
,
R.
,
Shabanian
,
S. R.
, and
Hosseinzadeh
,
M.
,
2021
, “
A Novel Dual-Diameter Closed-Loop Pulsating Heat Pipe for a Flat Plate Solar Collector
,”
Energy
,
230
, p.
120751
.10.1016/j.energy.2021.120751
27.
Patel
,
E. D.
, and
Kumar
,
S.
,
2023
, “
Thermal Performance of a Single Loop Pulsating Heat Pipe With Asymmetric Adiabatic Channel
,”
Appl. Therm. Eng.
,
219
, p.
119541
.10.1016/j.applthermaleng.2022.119541
28.
Sedighi
,
E.
,
Amarloo
,
A.
, and
Shafii
,
B.
,
2018
, “
Numerical and Experimental Investigation of Flat-Plate Pulsating Heat Pipes With Extra Branches in the Evaporator Section
,”
Int. J. Heat Mass Transfer
,
126
, pp.
431
441
.10.1016/j.ijheatmasstransfer.2018.05.047
29.
Sedighi
,
E.
,
Amarloo
,
A.
, and
Shafii
,
M. B.
,
2018
, “
Experimental Investigation of the Thermal Characteristics of Single-Turn Pulsating Heat Pipes With an Extra Branch
,”
Int. J. Therm. Sci.
,
134
, pp.
258
268
.10.1016/j.ijthermalsci.2018.08.024
30.
Satyanarayana
,
K.
,
Reddy
,
N. V. S. M.
, and
Venugopal
,
S.
,
2023
, “
Numerical Study to Recover Low-Grade Waste Heat Using Pulsating Heat Pipes and a Comparative Study on Performance of Conventional Pulsating Heat Pipe and Additional Branch Pulsating Heat Pipe
,”
Numer. Heat Transfer, Part A
,
83
(
3
), pp.
248
264
.10.1080/10407782.2022.2091366
31.
Ji
,
Y.
,
Chen
,
H. H.
,
Kim
,
Y. J.
,
Yu
,
Q.
,
Ma
,
X.
, and
Ma
,
H. B.
,
2012
, “
Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
7
), p.
074502
.10.1115/1.4006111
32.
Ma
,
X.
,
Hao
,
T.
,
Lan
,
Z.
, and
Li
,
N.
,
2014
, “
Effects of Superhydrophobic and Superhydrophilic Surfaces on Heat Transfer and Oscillating Motion of an Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
8
), p.
082001
.10.1115/1.4027390
33.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
,
Zhao
,
Y.
, and
Ma
,
H.
,
2014
, “
Effects of Hydrophilic Surface on Heat Transfer Performance and Oscillating Motion for an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
72
, pp.
50
65
.10.1016/j.ijheatmasstransfer.2014.01.007
34.
Hao
,
T.
,
Ma
,
X.
, and
Lan
,
Z.
,
2018
, “
Effects of Hydrophilic and Hydrophobic Surfaces on Start-Up Performance of an Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
1
), p.
012002
.10.1115/1.4037341
35.
Leu
,
T. S.
, and
Wu
,
C. H.
,
2017
, “
Experimental Studies of Surface Modified Oscillating Heat Pipes
,”
Heat Mass Transfer/Waerme- Stoffuebertrag.
,
53
(
11
), pp.
3329
3340
.10.1007/s00231-017-2051-2
36.
Wang
,
J.
,
Xie
,
J.
, and
Liu
,
X.
,
2020
, “
Investigation of Wettability on Performance of Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
150
, p.
119354
.10.1016/j.ijheatmasstransfer.2020.119354
37.
Malla
,
L. K.
,
Dhanalakota
,
P.
,
Dileep
,
H.
,
Mahapatra
,
P. S.
, and
Pattamatta
,
A.
,
2024
, “
Surface Wettability Modifications and Applications in Wickless Heat Pipes
,”
Surf. Interfaces
,
45
, p.
103837
.10.1016/j.surfin.2023.103837
38.
Betancur
,
L.
,
Mangini
,
D.
,
Mantelli
,
M.
, and
Marengo
,
M.
,
2020
, “
Experimental Study of Thermal Performance in a Closed Loop Pulsating Heat Pipe With Alternating Superhydrophobic Channels
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100360
.10.1016/j.tsep.2019.100360
39.
Kang
,
Z.
,
Shou
,
D.
, and
Fan
,
J.
,
2021
, “
Numerical Study of a Novel Single-Loop Pulsating Heat Pipe With Separating Walls Within the Flow Channel
,”
Appl. Therm. Eng.
,
196
, p.
117246
.10.1016/j.applthermaleng.2021.117246
40.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
41.
Xie
,
F.
,
Li
,
X.
,
Qian
,
P.
,
Huang
,
Z.
, and
Liu
,
M.
,
2020
, “
Effects of Geometry and Multisource Heat Input on Flow and Heat Transfer in Single Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
168
, p.
114856
.10.1016/j.applthermaleng.2019.114856
42.
Kell
,
S.
,
1975
, “
Density, Thermal Expansivity, and Compressibility of Liquid Water From 0 °C to 150 °C: Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale
,”
J. Chem. Eng. Data
,
20
(
1
), pp.
97
105
.10.1021/je60064a005
43.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
, The Properties of Gases and Liquids, McGraw-Hill Inc, New York.
44.
Grazzini
,
G.
,
Milazzo
,
A.
, and
Piazzini
,
S.
,
2011
, “
Prediction of Condensation in Steam Ejector for a Refrigeration System
,”
Int. J. Refrig.
,
34
(
7
), pp.
1641
1648
.10.1016/j.ijrefrig.2010.09.018
45.
Janajreh
,
I.
,
Hasania
,
A.
, and
Fath
,
H.
,
2013
, “
Numerical Simulation of Vapor Flow and Pressure Drop Across the Demister of MSF Desalination Plant
,”
Energy Convers. Manage.
,
65
, pp.
793
800
.10.1016/j.enconman.2012.03.011
46.
Monteith
,
J.
, and
Unsworth
,
M.
,
2007
,
Principles of Environmental Physics
, 3rd ed.,
Academic Press
, Cambridge, MA.
47.
Hendersonsellers
,
B.
,
1984
, “
A New Formula for Latent-Heat of Vaporization of Water as a Function of Temperature
,”
Q. J. R. Meteorolog. Soc.
,
110
(
466
), pp.
1186
1190
.10.1002/qj.49711046626
48.
Jung
,
J.
, and
Jeon
,
Y.
,
2023
, “
Numerical Study on the Heat Transfer Characteristics of Three-Dimensional Pulsating Heat Pipe
,”
J. Mech. Sci. Technol.
,
37
(
9
), pp.
4869
4876
.10.1007/s12206-023-0839-1
49.
Saha
,
N.
,
Das
,
P. K.
, and
Sharma
,
P. K.
,
2014
, “
Influence of Process Variables on the Hydrodynamics and Performance of a Single Loop Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
74
, pp.
238
250
.10.1016/j.ijheatmasstransfer.2014.02.067
50.
Xu
,
J. L.
, and
Zhang
,
X. M.
,
2005
, “
Start-Up and Steady Thermal Oscillation of a Pulsating Heat Pipe
,”
Heat Mass Transfer/Waerme- Stoffuebertrag.
,
41
(
8
), pp.
685
694
.10.1007/s00231-004-0535-3
51.
Groll
,
M.
, and
Khandekar
,
S.
,
2004
, “
State of the Art on Pulsating Heat Pipes
,”
ASME
Paper No. ICMM2004-2318.10.1115/ICMM2004-2318
52.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.10.1108/09615530210434304
53.
Senjaya
,
R.
, and
Inoue
,
T.
,
2013
, “
Oscillating Heat Pipe Simulation Considering Bubble Generation Part I: Presentation of the Model and Effects of a Bubble Generation
,”
Int. J. Heat Mass Transfer
,
60
, pp.
816
824
.10.1016/j.ijheatmasstransfer.2013.01.059
54.
Cheng
,
P.
, and
Ma
,
H.
,
2011
, “
A Mathematical Model of an Oscillating Heat Pipe
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1037
1046
.10.1080/01457632.2011.556495
55.
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2008
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.10.1016/j.applthermaleng.2007.05.007
56.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
57.
Mohammadian
,
S. K.
,
Mohammed
,
R. H.
,
Nunez
,
R.
,
Rupam
,
T.
,
Spitzenberger
,
J.
,
Hoelle
,
J.
,
Ibrahim
,
O. T.
,
Feng
,
F. Z.
,
Miller
,
A.
,
Taft
,
B.
,
Allison
,
J.
,
Abu-Heiba
,
A.
,
Mahderekal
,
I.
, and
Ma
,
H.
,
2024
, “
Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
11
), p.
110801
.10.1115/1.4065718
You do not currently have access to this content.