Abstract

A liquid column hanging between two surfaces (e.g., rod ends) appears in many engineering applications. This study focuses on its solidification with volume expansion through the use of an axisymmetric front-tracking method. The phase boundaries are handled by connecting points while the momentum and energy equations are solved on a fixed, rectangular grid. The rods holding the column in the vertical direction have different radii and temperatures and initiate solidification from their ends due to their temperatures smaller than the liquid melting point. As the upper rod is hotter than the lower rod, the lower phase-change interface moves faster than the upper one, resulting in an increase in the difference between the lengths of the upper and lower solid phases. The liquid phase changing into the lighter solid phase results in a ring formed near the midplane of the column at the end of solidification. The ring is located above the midplane and shifts more away from it as the upper rod has a higher temperature and a smaller radius than the lower rod. Increasing the upper rod radius or the column length or decreasing the Stefan number causes the solidification of the column to progress longer.

References

1.
McKinley
,
G. H.
, and
Sridhar
,
T.
,
2002
, “
Filament-Stretching Rheometry of Complex Fluids
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
375
415
.10.1146/annurev.fluid.34.083001.125207
2.
Chen
,
S.
,
Duan
,
L.
, and
Kang
,
Q.
,
2021
, “
Study on Propellant Management Device in Plate Surface Tension Tanks
,”
Acta Mech. Sin.
,
37
(
10
), pp.
1498
1508
.10.1007/s10409-021-01121-y
3.
Kumar
,
S.
,
2015
, “
Liquid Transfer in Printing Processes: Liquid Bridges With Moving Contact Lines
,”
Annu. Rev. Fluid. Mech.
,
47
(
1
), pp.
67
94
.10.1146/annurev-fluid-010814-014620
4.
Roisman
,
I. V.
,
Abboud
,
M.
,
Brockmann
,
P.
,
Berner
,
F.
,
Berger
,
R.
,
Rothmann-Brumm
,
P.
,
Sauer
,
H. M.
,
Dörsam
,
E.
, and
Hussong
,
J.
,
2023
, “
Forced Flows in Liquid Bridges
,”
Curr. Opin. Colloid Interface Sci.
,
67
, p.
101738
.10.1016/j.cocis.2023.101738
5.
Boucher
,
E. A.
, and
Jones
,
T. G. J.
,
1988
, “
Equilibrium and Stability Characteristics of Zero-Gravity Fluid Bridges Constrained Between Equal Solid Rods
,”
J. Colloid Interface Sci.
,
126
(
2
), pp.
469
481
.10.1016/0021-9797(88)90146-4
6.
Carruthers
,
J. R.
, and
Grasso
,
M.
,
1972
, “
Studies of Floating Liquid Zones in Simulated Zero Gravity
,”
J. Appl. Phys.
,
43
(
2
), pp.
436
445
.10.1063/1.1661135
7.
Sanz
,
A.
, and
Martinez
,
I.
,
1983
, “
Minimum Volume for a Liquid Bridge Between Equal Disks
,”
J. Colloid Interface Sci.
,
93
(
1
), pp.
235
240
.10.1016/0021-9797(83)90401-0
8.
Yano
,
T.
,
Nishino
,
K.
,
Matsumoto
,
S.
,
Ueno
,
I.
,
Komiya
,
A.
,
Kamotani
,
Y.
, and
Imaishi
,
N.
,
2018
, “
Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges
,”
Microgravity Sci. Technol.
,
30
(
5
), pp.
599
610
.10.1007/s12217-018-9614-9
9.
Turkoz
,
E.
,
Lopez-Herrera
,
J. M.
,
Eggers
,
J.
,
Arnold
,
C. B.
, and
Deike
,
L.
,
2018
, “
Axisymmetric Simulation of Viscoelastic Filament Thinning With the Oldroyd-B Model
,”
J. Fluid Mech.
,
851
, p.
R2
.10.1017/jfm.2018.514
10.
Darabi
,
P.
,
Li
,
T.
,
Pougatch
,
K.
,
Salcudean
,
M.
, and
Grecov
,
D.
,
2010
, “
Modeling the Evolution and Rupture of Stretching Pendular Liquid Bridges
,”
Chem. Eng. Sci.
,
65
(
15
), pp.
4472
4483
.10.1016/j.ces.2010.04.003
11.
Herrada
,
M. A.
, and
Montanero
,
J. M.
,
2016
, “
A Numerical Method to Study the Dynamics of Capillary Fluid Systems
,”
J. Comput. Phys.
,
306
, pp.
137
147
.10.1016/j.jcp.2015.11.048
12.
Rubio
,
M.
,
Vega
,
E. J.
,
Herrada
,
M. A.
,
Montanero
,
J. M.
, and
Galindo-Rosales
,
F. J.
,
2020
, “
Breakup of an Electrified Viscoelastic Liquid Bridge
,”
Phys. Rev. E
,
102
(
3
), p.
033103
.10.1103/PhysRevE.102.033103
13.
Montanero
,
J. M.
, and
Ponce-Torres
,
A.
,
2020
, “
Review on the Dynamics of Isothermal Liquid Bridges
,”
ASME Appl. Mech. Rev.
,
72
(
1
), p.
010803
.10.1115/1.4044467
14.
Eustathopoulos
,
N.
, and
Duffar
,
T.
,
2010
, “
Basic Principles of Capillarity in Relation to Crystal Growth
,”
Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques
,
Wiley, Inc
,
Chichester
, p.
1
.
15.
Li
,
K.
,
Xun
,
B.
,
Imaishi
,
N.
,
Yoda
,
S.
, and
Hu
,
W. R.
,
2008
, “
Thermocapillary Flows in Liquid Bridges of Molten Tin With Small Aspect Ratios
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1190
1196
.10.1016/j.ijheatfluidflow.2008.02.011
16.
Yasuhiro
,
S.
,
Imaishi
,
N.
,
Akiyama
,
Y.
,
Fujino
,
S.
, and
Yoda
,
S.
,
2004
, “
Oscillatory Marangoni Flow in Half-Zone Liquid Bridge of Molten Tin Supported Between Two Iron Rods
,”
J. Cryst. Growth
,
262
(
1–4
), pp.
631
644
.10.1016/j.jcrysgro.2003.10.042
17.
Kamotani
,
Y.
, and
Ostrach
,
S.
,
1998
, “
Theoretical Analysis of Thermocapillary Flow in Cylindrical Columns of High Prandtl Number Fluids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
120
(
3
), pp.
758
764
.10.1115/1.2824346
18.
Kang
,
Q.
,
Wu
,
D.
,
Duan
,
L.
,
Hu
,
L.
,
Wang
,
J.
,
Zhang
,
P.
, and
Hu
,
W.
,
2019
, “
The Effects of Geometry and Heating Rate on Thermocapillary Convection in the Liquid Bridge
,”
J. Fluid Mech.
,
881
, pp.
951
982
.10.1017/jfm.2019.757
19.
Yang
,
S.
,
Liang
,
R.
,
Xiao
,
S.
,
He
,
J.
, and
Zhang
,
S.
,
2017
, “
Influence of Ambient Airflow on Free Surface Deformation and Flow Pattern Inside Liquid Bridge With Large Prandtl Number Fluid (Pr > 100) Under Gravity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
12
), p.
122001
.10.1115/1.4036871
20.
Chun
,
C.-H.
,
1978
, “
A Micro-Gravity Simulation of the Marangoni Convection
,”
Acta Astronaut.
,
5
(
9
), pp.
681
686
.10.1016/0094-5765(78)90047-4
21.
Wang
,
Y.
,
Zeng
,
Z.
,
Liu
,
H.
,
Zhang
,
L.
,
Yin
,
L.
,
Xiao
,
Y.
, and
Liu
,
Y.
,
2022
, “
Flow Instabilities in Thermocapillary Liquid Bridges Between Two Coaxial Disks With Different Radii
,”
Int. J. Heat Mass Transfer
,
183
, p.
122182
.10.1016/j.ijheatmasstransfer.2021.122182
22.
Wang
,
Y.
,
Zhang
,
L.
,
Liu
,
H.
,
Yin
,
L.
,
Xiao
,
Y.
,
Liu
,
Y.
, and
Zeng
,
Z.
,
2022
, “
Instabilities of Thermocapillary Flows in Large Prandtl Number Liquid Bridges Between Two Coaxial Disks With Different Radii
,”
Phys. Fluids
,
34
(
6
), p.
062113
.10.1063/5.0090593
23.
Varas
,
R.
,
Salgado Sánchez
,
P.
,
Porter
,
J.
,
Ezquerro
,
J. M.
, and
Lapuerta
,
V.
,
2021
, “
Thermocapillary Effects During the Melting in Microgravity of Phase Change Materials With a Liquid Bridge Geometry
,”
Int. J. Heat Mass Transfer
,
178
, p.
121586
.10.1016/j.ijheatmasstransfer.2021.121586
24.
Varas
,
R.
,
Martínez
,
Ú.
,
Olfe
,
K.
,
Salgado Sánchez
,
P.
,
Porter
,
J.
, and
Ezquerro
,
J. M.
,
2023
, “
Effects of Thermocapillary and Natural Convection During the Melting of PCMs With a Liquid Bridge Geometry
,”
Microgravity Sci. Technol.
,
35
(
2
), p.
17
.10.1007/s12217-023-10040-5
25.
Cröll
,
A.
,
Kaiser
,
T.
,
Schweizer
,
M.
,
Danilewsky
,
A. N.
,
Lauer
,
S.
,
Tegetmeier
,
A.
, and
Benz
,
K. W.
,
1998
, “
Floating-Zone and Floating-Solution-Zone Growth of GaSb Under Microgravity
,”
J. Cryst. Growth
,
191
(
3
), pp.
365
376
.10.1016/S0022-0248(98)00215-2
26.
Sorgenfrei
,
T.
,
2018
, “
30 Years of Crystal Growth Under Microgravity Conditions in Freiburg: An Overview of Past Activities
,”
Cryst. Res. Technol.
,
53
(
5
), p.
1700265
.10.1002/crat.201700265
27.
Huang
,
W.
,
Zhou
,
X.
,
Xu
,
J.
, and
Liu
,
Y.
,
2022
, “
Effect of Liquid Size on Vertical Liquid Bridge Freezing
,”
Int. J. Therm. Sci.
,
173
, p.
107386
.10.1016/j.ijthermalsci.2021.107386
28.
Huang
,
W.
, and
Zhou
,
X.
,
2020
, “
Freezing of Axisymmetric Liquid Bridges
,”
Phys. Rev. Fluids
,
5
(
10
), p.
103601
.10.1103/PhysRevFluids.5.103601
29.
Ho
,
N. X.
, and
Vu
,
T. V.
,
2024
, “
Liquid Bridge Solidification Between Two Rods With Curved Caps
,”
Chem. Eng. Sci.
,
291
, p.
119933
.10.1016/j.ces.2024.119933
30.
Vu
,
T. V.
,
2023
, “
A Numerical Investigation of a Liquid Bridge Solidifying With Volume Change
,”
Int. J. Heat Mass Transfer
,
201
, p.
123640
.10.1016/j.ijheatmasstransfer.2022.123640
31.
Wu
,
X.
,
Gong
,
J.
,
Jin
,
L.
,
Hou
,
J.
, and
Liu
,
G.
,
2023
, “
Experimental Study on the Freezing Process of a Supercooled Horizontal Water Bridge Between Cold Fins
,”
Int. J. Refrig.
,
145
, pp.
481
491
.10.1016/j.ijrefrig.2022.09.019
32.
Marin
,
A. G.
,
Enriquez
,
O. R.
,
Brunet
,
P.
,
Colinet
,
P.
, and
Snoeijer
,
J. H.
,
2014
, “
Universality of Tip Singularity Formation in Freezing Water Drops
,”
Phys. Rev. Lett.
,
113
(
5
), p.
054301
.10.1103/PhysRevLett.113.054301
33.
Vu
,
T. V.
,
2020
, “
Numerical Study of Solidification of a Drop With a Growth Angle Difference
,”
Int. J. Heat Fluid Flow
,
84
, p.
108599
.10.1016/j.ijheatfluidflow.2020.108599
34.
Yamada
,
Y.
,
Okano
,
K.
,
Isobe
,
K.
, and
Horibe
,
A.
,
2023
, “
Water/Ice Mixture- and Freezing-Front Motion in a Non-Isothermal Liquid Bridge
,”
Appl. Phys. Lett.
,
123
(
23
), p.
231601
.10.1063/5.0167486
35.
Huppert
,
H. E.
,
1990
, “
The Fluid Mechanics of Solidification
,”
J. Fluid Mech.
,
212
, pp.
209
240
.10.1017/S0022112090001938
36.
Che
,
J.
,
Ceccio
,
S. L.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Structures Formed by the Solidification of Impinging Molten Metal Drops
,”
Appl. Math. Modell.
,
28
(
1
), pp.
127
144
.10.1016/S0307-904X(03)00122-7
37.
Tryggvason
,
G.
,
Esmaeeli
,
A.
, and
Al-Rawahi
,
N.
,
2005
, “
Direct Numerical Simulations of Flows With Phase Change
,”
Comput. Struct.
,
83
(
6–7
), pp.
445
453
.10.1016/j.compstruc.2004.05.021
38.
Zhang
,
X.
,
Liu
,
X.
,
Wu
,
X.
, and
Min
,
J.
,
2018
, “
Simulation and Experiment on Supercooled Sessile Water Droplet Freezing With Special Attention to Supercooling and Volume Expansion Effects
,”
Int. J. Heat Mass Transfer
,
127
, pp.
975
985
.10.1016/j.ijheatmasstransfer.2018.07.021
39.
Shetabivash
,
H.
,
Dolatabadi
,
A.
, and
Paraschivoiu
,
M.
,
2020
, “
A Multiple Level-Set Approach for Modelling Containerless Freezing Process
,”
J. Comput. Phys.
,
415
, p.
109527
.10.1016/j.jcp.2020.109527
40.
Zhang
,
C.
,
Yin
,
S.
,
Zhang
,
H.
, and
Yang
,
C.
,
2023
, “
Simulation of a Sessile Nanofluid Droplet Freezing With an Immersed Boundary-Lattice Boltzmann Model
,”
Int. J. Multiphase Flow
,
167
, p.
104553
.10.1016/j.ijmultiphaseflow.2023.104553
41.
Al-Rawahi
,
N.
, and
Tryggvason
,
G.
,
2002
, “
Numerical Simulation of Dendritic Solidification With Convection: Two-Dimensional Geometry
,”
J. Comput. Phys.
,
180
(
2
), pp.
471
496
.10.1006/jcph.2002.7092
42.
Vu
,
T. V.
, and
Wells
,
J. C.
,
2017
, “
Numerical Simulations of Solidification Around Two Tandemly-Arranged Circular Cylinders Under Forced Convection
,”
Int. J. Multiphase Flow
,
89
, pp.
331
344
.10.1016/j.ijmultiphaseflow.2016.11.007
43.
Vu
,
T. V.
,
Tryggvason
,
G.
,
Homma
,
S.
, and
Wells
,
J. C.
,
2015
, “
Numerical Investigations of Drop Solidification on a Cold Plate in the Presence of Volume Change
,”
Int. J. Multiphase Flow
,
76
, pp.
73
85
.10.1016/j.ijmultiphaseflow.2015.07.005
44.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
45.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling. Part I: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5451
5461
.10.1016/j.ijheatmasstransfer.2004.07.027
46.
Tryggvason
,
G.
,
Esmaeeli
,
A.
,
Lu
,
J.
, and
Biswas
,
S.
,
2006
, “
Direct Numerical Simulations of Gas/Liquid Multiphase Flows
,”
Fluid Dyn. Res.
,
38
(
9
), pp.
660
681
.10.1016/j.fluiddyn.2005.08.006
47.
Ho
,
N. X.
,
Vu
,
T. V.
, and
Pham
,
B. D.
,
2021
, “
A Numerical Study of a Liquid Compound Drop Solidifying on a Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
165
, p.
120713
.10.1016/j.ijheatmasstransfer.2020.120713
48.
Nakajima
,
K.
, and
Usami
,
N.
, eds.,
2009
,
Crystal Growth of Silicon for Solar Cells
,
Springer
, Berlin, Heidelberg.
49.
Qian
,
B.
, and
Breuer
,
K. S.
,
2011
, “
The Motion, Stability and Breakup of a Stretching Liquid Bridge With a Receding Contact Line
,”
J. Fluid Mech.
,
666
, pp.
554
572
.10.1017/S0022112010004611
You do not currently have access to this content.