Abstract

Perching in unmanned aerial vehicles is appealing for reconnaissance, monitoring, communications, and charging. This paper focuses on modeling, simulation, and control of bioinspired perching in unmanned aerial vehicles on cylindrical objects, which will be used for future planning and control research. A modular approach is taken where the quadrotor, legs, feet, and toes are modeled separately and then integrated to form a complete simulation system. New models of these components consider kinematics and dynamics of each element and their coupling through tendons that provide actuation. The integrated model is assembled to simulate a physical prototype and then validated based upon physical experiments to provide calibration. Simulation results evaluate the validated model performing perching with different gripper-perch alignments. The simulation environment developed in this research provides a foundation to research control approaches for use with the discussed passive perching mechanism. The simulation was validated to capture the dynamics of the real perching mechanism. This platform will be used in future work to develop a control approach that will be implemented in a quadrotor system to land and take-off from a perch in a reliable manner.

References

References
1.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Kallman
,
J. C.
,
Bareiss
,
D. F.
,
Dunlop
,
D. J.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2013
, “
An Avian-Inspired Passive Mechanism for Quadrotor Perching
,”
IEEE/ASME Trans. Mech.
,
18
(
2
), pp.
506
517
. 10.1109/TMECH.2012.2211081
2.
Burroughs
,
M. L.
,
Freckleton
,
K. B.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2016
, “
A Sarrus-Based Passive Mechanism for Rotorcraft Perching
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011010
. 10.1115/1.4030672
3.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Johnson
,
C. J.
,
Kallman
,
J. C.
,
Simpson
,
J. A.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2011
, “
Avian-inspired Passive Perching Mechanism for Robotic Rotorcraft
,”
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011)
,
IEEE
,
San Francisco, CA
, pp.
4975
4980
.
4.
Bonyan Khamseh
,
H.
,
Janabi-Sharifi
,
F.
, and
Abdessameud
,
A.
,
2018
, “
Aerial Manipulation—A Literature Survey
,”
Rob. Auton. Syst.
,
107
, pp.
221
235
. 10.1016/j.robot.2018.06.012
5.
Korpela
,
C.
,
Orsag
,
M.
, and
Oh
,
P.
,
2014
, “
Towards Valve Turning Using a Dual-Arm Aerial Manipulator
,”
Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014)
,
14–18 Sept.
,
IEEE
,
Piscataway, NJ
, pp.
3411
3416
.
6.
Mellinger
,
D.
,
Shomin
,
M.
, and
Kumar
,
V.
,
2010
, “
Control of Quadrotors for Robust Perching and Landing
,”
Proceedings of the International Powered Lift Conference
, pp.
119
126
.
7.
Wanchao
,
C.
,
Low
,
K. H.
,
Hoon
,
K. H.
, and
Tang
,
J.
,
2014
, “
An Optimized Perching Mechanism for Autonomous Perching With a Quadrotor
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)
,
31 May–7 June
,
IEEE
,
Piscataway, NJ
, pp.
3109
3115
.
8.
Chirarattananon
,
P.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2014
, “
Fly on the Wall [Robotic Insects]
,”
Proceedings of the 2014 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
12–15 Aug. 2014
,
IEEE
,
Piscataway, NJ
, pp.
1001
1008
.
9.
Hao
,
J.
,
Pope
,
M. T.
,
Hawkes
,
E. W.
,
Christensen
,
D. L.
,
Estrada
,
M. A.
,
Parlier
,
A.
,
Tran
,
R.
, and
Cutkosky
,
M. R.
,
2014
, “
Modeling the Dynamics of Perching With Opposed-Grip Mechanisms
,”
Proc. 2014 IEEE International Conference on Robotics and Automation (ICRA)
,
31 May–7 June 2014
,
IEEE
,
Piscataway, NJ
, pp.
3102
3108
.
10.
Sreenath
,
K.
,
Michael
,
N.
, and
Kumar
,
V.
,
2013
, “
Trajectory Generation and Control of a Quadrotor With a Cable-Suspended Load—A Differentially-Flat Hybrid System
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA)
,
6–10 May
,
IEEE
,
Piscataway, NJ
, pp.
4888
4895
.
11.
Ghadiok
,
V.
,
Goldin
,
J.
, and
Ren
,
W.
,
2012
, “
On the Design and Development of Attitude Stabilization, Vision-Based Navigation, and Aerial Gripping for a Low-Cost Quadrotor
,”
Auton. Rob.
,
33
(
1–2
), pp.
41
68
. 10.1007/s10514-012-9286-z
12.
Mohta
,
K.
,
Kumar
,
V.
, and
Daniilidis
,
K.
,
2014
, “
Vision-Based Control of a Quadrotor for Perching on Lines
,”
Proc. 2014 IEEE International Conference on Robotics and Automation (ICRA)
,
31 May–7 June
,
IEEE
,
Piscataway, NJ
, pp.
3130
3136
.
13.
Pounds
,
P. E. I.
,
Bersak
,
D. R.
, and
Dollar
,
A. M.
,
2011
, “
Grasping From the air: Hovering Capture and Load Stability
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation, ICRA 2011
,
Shanghai
, pp.
2491
2498
.
14.
Ghadiok
,
V.
,
Goldin
,
J.
, and
Ren
,
W.
,
2011
, “
Autonomous Indoor Aerial Gripping Using a Quadrotor
,”
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS’11
,
San Francisco, CA
, pp.
4645
4651
.
15.
Backus
,
S. B.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2014
, “
Design of Hands for Aerial Manipulation: Actuator Number and Routing for Grasping and Perching
,”
Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014
,
Institute of Electrical and Electronics Engineers Inc.
, pp.
34
40
.
16.
Dang
,
K. N.
,
Lee
,
G.
, and
Kang
,
T.
,
2015
, “
Linear Quadrotor Modelling and Attitude Controller Design Based on Experimental Data
,”
Proceedings of the 15th International Conference on Control, Automation and Systems, ICCAS 2015
,
Institute of Electrical and Electronics Engineers Inc.
, pp.
472
476
.
You do not currently have access to this content.